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Abstract How can we analyze tensors that are composed of
0’s and 1’s? How can we efficiently analyze such Boolean
tensors with millions or even billions of entries? Boolean ten-
sors often represent relationship, membership, or occurrences
of events such as subject-relation-object tuples in knowledge
base data (e.g., ‘Seoul’-‘is the capital of’-‘South Korea’).
Boolean tensor factorization (BTF) is a useful tool for an-
alyzing binary tensors to discover latent factors from them.
Furthermore, BTF is known to produce more interpretable
and sparser results than normal factorization methods. Al-
though several BTF algorithms exist, they do not scale up for
large-scale Boolean tensors.

In this paper, we propose DBTF, a distributed method for
Boolean CP (DBTF-CP) and Tucker (DBTF-TK) factoriza-
tions running on the Apache Spark framework. By distributed
data generation with minimal network transfer, exploiting the
characteristics of Boolean operations, and with careful parti-
tioning, DBTF successfully tackles the high computational
costs and minimizes the intermediate data. Experimental re-
sults show that DBTF-CP decomposes up to 163–323× larger
tensors than existing methods in 82–180× less time, and
DBTF-TK decomposes up to 83–163× larger tensors than
existing methods in 86–129× less time. Furthermore, both
DBTF-CP and DBTF-TK exhibit near-linear scalability in
terms of tensor dimensionality, density, rank, and machines.
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1 Introduction

How can we analyze tensors that are composed of 0’s and 1’s?
How can we efficiently analyze such Boolean tensors that
have millions or even billions of entries? Many real-world
data can be represented as tensors, or multi-dimensional
arrays. Among them, many are composed of only 0’s and 1’s.
Those tensors often represent relationship, membership, or
occurrences of events. Examples of such data include subject-
relation-object tuples in knowledge base data (e.g., ‘Seoul’-
‘is the capital of’-‘South Korea’), source IP-destination IP-
port number-timestamp in network intrusion logs, and user1
ID-user2 ID-timestamp in friendship network data. Tensor
factorizations are widely-used tools for analyzing tensors.
CANDECOMP/PARAFAC (CP) and Tucker are two major
tensor factorization methods [1]. These methods decompose
a tensor into a sum of rank-1 tensors, from which we can find
the latent structure of the data. Tensor factorization methods
can be classified according to the constraint placed on the
resulting rank-1 tensors [2]. The unconstrained form allows
entries in the rank-1 tensors to be arbitrary real numbers,
where we find linear relationships between latent factors;
when a non-negativity constraint is imposed on the entries,
the resulting factors reveal parts-of-whole relationships.

What we focus on in this paper is yet another approach
with Boolean constraints, named Boolean tensor factorization
(BTF) [3], that has many interesting applications including
latent concept discovery, clustering, recommendation, link
prediction, and synonym finding. For example, low-rank BTF
yields factor matrices whose columns correspond to latent
concepts underlying the data, and applying a Boolean Tucker
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Table 1: Comparison of our proposed DBTF and existing
methods for Boolean (a) CP and (b) Tucker factorizations in
terms of whether a method is parallel (Par.) and distributed
(Dist.). DBTF is the only approach that is parallel and dis-
tributed.

(a) Boolean CP Factorization

Method Par. Dist.

Walk’n’Merge [2] Yes No
BCP ALS [3] No No

DBTF-CP Yes Yes

(b) Boolean Tucker Factorization

Method Par. Dist.

Walk’n’Merge [2] Yes No
BTucker ALS [3] No No

DBTF-TK Yes Yes

factorization to subject-predicate-object triples can find syn-
onyms and uncover facts from the data [4]. BTF requires
that the input tensor, all factor matrices, and a core tensor
be binary. Furthermore, BTF uses Boolean sum instead of
normal addition, which means 1+1 = 1 in BTF. When the
data is inherently binary, BTF is an appealing choice as it
can reveal Boolean structures and relationships underlying
the binary tensor that are hard to be found by other factoriza-
tions. Also, BTF is known to produce more interpretable and
sparser results than the unconstrained and the non-negativity
constrained counterparts, though at the expense of increased
computational complexity [3, 5].

While several algorithms have been developed for BTF [2,
3, 6, 7], they are not fast and scalable enough for large-scale
tensors that have become widespread. For example, consider
DBLP and NELL datasets, which are two different types of
real-world tensors consisting of 1.3M to 77M non-zeros. In
our experiments on these tensors, all of the state-of-the-art
BTF methods got terminated due to out-of-memory errors,
or failed at processing them within a reasonable amount of
time. Even in the case where existing approaches could be
applied, their performance is not enough for many practical
applications. In order for BTF to be used for the analysis of
large-scale tensors in practical settings, it is of great impor-
tance to overcome these limitations. In summary, the major
challenges that need to be tackled for fast and scalable BTF
are 1) how to minimize the computational costs involved with
updating Boolean factor matrices, and 2) how to minimize
the intermediate data that are generated in the process of
factorization. Existing methods fail to solve both of these
challenges.

In this paper, we propose DBTF (Distributed Boolean
Tensor Factorization), a distributed method for Boolean CP
and Tucker factorizations running on the Apache Spark frame-
work [8]. DBTF tackles the high computational cost by reduc-
ing the operations involved with BTF in an efficient greedy
algorithm, while minimizing the generation and shuffling of
intermediate data. Also, DBTF exploits the characteristics of
Boolean operations in solving both of the above problems.
Due to the effective algorithm designed carefully with these

ideas, DBTF achieves higher efficiency and scalability com-
pared to existing methods. Table 1 shows a comparison of
DBTF and existing methods in terms of whether a method is
parallel and distributed. Note that DBTF is the only approach
that is parallel and distributed.

The main contributions of this paper are as follows:
– Algorithm. We propose DBTF, a distributed method for

Boolean CP (DBTF-CP) and Tucker (DBTF-TK) factor-
izations, which is designed to scale up to large tensors by
minimizing intermediate data and the number of opera-
tions for BTF, and carefully partitioning the workload.

– Theory. We provide an analysis of the proposed DBTF-
CP and DBTF-TK in terms of time complexity, memory
requirement, and the amount of shuffled data.

– Experiment. We present extensive empirical evidences
for the scalability and performance of DBTF. We show
that the proposed Boolean CP factorization method de-
composes up to 163–323× larger tensors than existing
methods in 82–180× less time, and the proposed Boolean
Tucker factorization method decomposes up to 83–163×
larger tensors than existing methods in 86–129× less
time. We also show that DBTF successfully decomposes
real-world tensors, such as DBLP and NELL, that cannot
be processed with the state-of-the-art BTF methods.
The code of our method and the datasets used in this paper

are available at https://www.cs.cmu.edu/~namyongp/
dbtf/. The preliminary version of this work is described
in [9]. In this paper, we present a distributed method for
Boolean Tucker factorization (DBTF-TK) in Sections 4.1
to 4.7, in addition to the Boolean CP factorization method
(DBTF-CP) previously presented in [9]. We also provide a
theoretical analysis, and an experimental evaluation of DBTF-
TK in Section 4.8 and Section 5, respectively.

The rest of the paper is organized as follows. We present
the preliminaries of CP and Tucker factorizations in normal
and Boolean settings in Section 2. Then we discuss related
works in Section 3, and describe our proposed method for
fast and scalable Boolean CP and Tucker factorization in
Section 4. After presenting experimental results in Section 5,
we conclude in Section 6.

2 Preliminaries

In this section, we provide the definition of Boolean arith-
metic, and present the notations and operations used for ten-
sor decomposition. Next, we give the definitions of normal
CP and Tucker decompositions, and those of Boolean CP and
Tucker decompositions. After that, we introduce approaches
for computing Boolean CP and Tucker decompositions. Sym-
bols used in the paper are summarized in Table 2.

https://www.cs.cmu.edu/~namyongp/dbtf/
https://www.cs.cmu.edu/~namyongp/dbtf/
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2.1 Boolean Arithmetic

Given binary data, all operations involved with Boolean ten-
sor factorization operate with Boolean arithmetic in which
addition (Boolean OR which is denoted by ∨) and multipli-
cation (Boolean AND which is denoted by ∧) between two
variables are defined as:

x y x∧ y x∨ y

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

2.2 Notation

We denote tensors by boldface Euler script letters (e.g., X),
matrices by boldface capitals (e.g., A), vectors by boldface
lowercase letters (e.g., a), and scalars by lowercase letters
(e.g., a).
Tensors and Matrices. Tensor is a multi-dimensional array.
The dimension of a tensor is also referred to as mode, order,
or way. A matrix A ∈ RI1×I2 is a tensor of order two. A
tensor X ∈ RI1×I2×···×IN is an N-mode or N-way tensor. The
(i1, i2, · · · , iN)-th entry of a tensor X is denoted by xi1i2···iN .
A colon in the subscript indicates taking all elements of
that mode. For example, given a matrix A, a: j denotes the
j-th column, and ai: denotes the i-th row. The j-th column
of A, a: j, is also denoted more concisely as a j. A colon
between two numbers in the subscript denotes taking all such
elements whose indices in that mode lie between the given
numbers. For instance, A(1:5) j indicates the first five elements
of a j. For a three-way tensor X, x: jk, xi:k, and xi j: are called
column (mode-1), row (mode-2), and tube (mode-3) fibers,
respectively. |X| denotes the number of non-zero elements in
a tensor X; ‖X‖ denotes the Frobenius norm of a tensor X,

and is defined as
√

∑i, j,k x2
i jk.

Tensor Matricization/Unfolding. The mode-n matricization
(or unfolding) of a tensor X ∈RI1×I2×···×IN , denoted by X(n),
is the process of unfolding X into a matrix by rearranging its
mode-n fibers to be the columns of the resulting matrix. For
instance, a three-way tensor X ∈ RI×J×K and its matriciza-
tions are mapped as follows:

xi jk→ [X(1)]ic where c = j+(k−1)J

xi jk→ [X(2)] jc where c = i+(k−1)I

xi jk→ [X(3)]kc where c = i+( j−1)I.

(1)

Outer Product and Rank-1 Tensor. We use ◦ to denote the
vector outer product. The three-way outer product of vectors

Table 2: Table of symbols.

Symbol Definition

X tensor (Euler script, bold letter)
A matrix (in uppercase, bold letter)
a column vector (lowercase, bold letter)
a scalar (lowercase, italic letter)
R rank (number of components)
G core tensor (∈ RR1×R2×R3 )

X(n) mode-n matricization of a tensor X
|X| number of non-zeros in the tensor X
‖X‖ Frobenius norm of the tensor X
A> transpose of matrix A
◦ outer product
⊗ Kronecker product
� Khatri-Rao product
B set of binary numbers, i.e., {0,1}
∨ Boolean sum of two binary tensors∨

Boolean summation of a sequence of binary tensors
� Boolean matrix product

I, J, K dimensions of each mode of an input tensor X
R1, R2, R3 dimensions of each mode of a core tensor G

a∈RI ,b∈RJ , and c∈RK is a tensor X= a◦b◦c∈RI×J×K

whose element (i, j,k) is defined as (a◦b◦ c)i jk = aib jck. A
three-way tensor X is rank-1 if it can be expressed as an outer
product of three vectors.
Kronecker Product. The Kronecker product of matrices
A ∈ RI1×J1 and B ∈ RI2×J2 produces a matrix of size I1I2-by-
J1J2, which is defined as:

A⊗B =


a11B a12B · · · a1J1B
a21B a22B · · · a2J1B

...
...

. . .
...

aI11B aI12B · · · aI1J1B

 . (2)

The Kronecker product of matrices A ∈ RI1×J1 and B ∈
RI2×J2 can also be expressed by vector-matrix Kronecker
products as follows:

A⊗B =


a1:⊗B
a2:⊗B

...
aI1:⊗B

 . (3)

Khatri-Rao Product. The Khatri-Rao product (or column-
wise Kronecker product) of matrices A∈RI×R and B∈RJ×R

produces a matrix of size IJ-by-R, and is defined as:

A�B = [a:1⊗b:1 a:2⊗b:2 · · · a:R⊗b:R]. (4)

Given matrices A ∈ RI×R and B ∈ RJ×R, the Khatri-Rao
product A�B can also be expressed by vector-matrix Khatri-
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Rao products as follows:

A�B =


a1:�B
a2:�B

...
aI1:�B

 . (5)

Set of Binary Numbers. We use B to denote the set of binary
numbers, that is, {0,1}.
Boolean Summation. We use

∨
to denote the Boolean sum-

mation, in which a sequence of Boolean tensors or matrices
are summed. The Boolean sum (∨) of two binary tensors
X ∈ BI×J×K and Y ∈ BI×J×K , is defined by:

(X∨Y)i jk = xi jk ∨ yi jk. (6)

The Boolean sum of two binary matrices is defined analo-
gously.
Boolean Matrix Product. The Boolean product of two bi-
nary matrices A ∈ BI×R and B ∈ BR×J is defined as:

(A�B)i j =
R∨

k=1

aikbk j. (7)

2.3 Tensor Rank and Tensor Decompositions

2.3.1 Normal Tensor Rank and Tensor Decompositions

With the above notations, we first give the definitions of nor-
mal tensor rank, and normal CP and Tucker decompositions.

Definition 1 (Tensor rank) The rank of a three-way tensor
X is the smallest integer R such that there exist R rank-1
tensors whose sum is equal to the tensor X, i.e.,

X=
R

∑
r=1

ar ◦br ◦ cr. (8)

Definition 2 (CP decomposition) Given a tensor X∈RI×J×K

and a rank R, find factor matrices A ∈ RI×R, B ∈ RJ×R, and
C ∈ RK×R such that they minimize∥∥∥∥∥X− R

∑
r=1

ar ◦br ◦ cr

∥∥∥∥∥ . (9)

CP decomposition can be expressed in a matricized form as
follows [1]:

X(1) ≈ A(C�B)>

X(2) ≈ B(C�A)>

X(3) ≈ C(B�A)>.

(10)

Definition 3 (Tucker decomposition) Given a tensor X ∈
RI×J×K and the dimensions of a core tensor R1, R2, and R3,
find factor matrices A ∈ RI×R1 , B ∈ RJ×R2 , C ∈ RK×R3 , and
a core tensor G ∈ RR1×R2×R3 such that they minimize∥∥∥∥∥X− R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1r2r3ar1 ◦br2 ◦ cr3

∥∥∥∥∥ . (11)

Tucker decomposition can be expressed in a matricized form
as follows [1]:

X(1) ≈ AG(1)(C⊗B)>

X(2) ≈ BG(2)(C⊗A)>

X(3) ≈ CG(3)(B⊗A)>.

(12)

2.3.2 Boolean Tensor Rank and Tensor Decompositions

We now give the definitions of Boolean tensor rank, and
Boolean CP and Tucker decompositions. The definitions
of Boolean tensor rank and Boolean tensor decompositions
differ from their normal counterparts in the following two
respects: 1) the tensor and factor matrices are binary; 2)
Boolean sum is used where 1+1 is defined to be 1.

Definition 4 (Boolean tensor rank) The Boolean rank of a
three-way binary tensor X is the smallest integer R such that
there exist R rank-1 binary tensors whose Boolean summa-
tion is equal to the tensor X, i.e.,

X=
R∨

r=1

ar ◦br ◦ cr. (13)

Definition 5 (Boolean CP decomposition) Given a binary
tensor X ∈ BI×J×K and a rank R, find binary factor matrices
A ∈ BI×R, B ∈ BJ×R, and C ∈ BK×R such that they minimize

∣∣∣∣∣X− R∨
r=1

ar ◦br ◦ cr

∣∣∣∣∣ . (14)

A

C

≈
B1111 11 11

=

a(

b(

c(

a+

b+

c+

a,

b,

c,
∨ ∨ ⋯ ∨∘ ∘ ∘

Fig. 1: Rank-R Boolean CP decomposition of a three-way
tensor X. X is decomposed into three binary factor matrices
A, B, and C.
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By replacing the normal matrix product in Equation (10) with
the Boolean matrix product, Boolean CP decomposition can
be expressed in a matricized form as follows:

X(1) ≈ A� (C�B)>

X(2) ≈ B� (C�A)>

X(3) ≈ C� (B�A)>.

(15)

Figure 1 illustrates the rank-R Boolean CP decomposition of
a three-way tensor X.

Definition 6 (Boolean Tucker decomposition) Given a bi-
nary tensor X ∈ BI×J×K and the dimensions of a core tensor
R1, R2, and R3, find binary factor matrices A ∈ BI×R1 , B ∈
BJ×R2 , C ∈ BK×R3 , and a binary core tensor G ∈ BR1×R2×R3

such that they minimize∣∣∣∣∣X−
R1∨

r1=1

R2∨
r2=1

R3∨
r3=1

gr1r2r3ar1 ◦br2 ◦ cr3

∣∣∣∣∣ . (16)

By using Boolean matrix product in place of the normal ma-
trix product in Equation (12), Boolean Tucker decomposition
can be expressed in a matricized form as follows:

X(1) ≈ A�G(1)� (C⊗B)>

X(2) ≈ B�G(2)� (C⊗A)>

X(3) ≈ C�G(3)� (B⊗A)>.

(17)

Figure 2 illustrates the rank-R Boolean Tucker decomposition
of a three-way tensor X.

A

C

≈
B

Fig. 2: Rank-R Boolean Tucker decomposition of a three-way
tensor X. X is decomposed into a binary core tensor G, and
three binary factor matrices A, B, and C.

Computing the Boolean CP and Tucker Decompositions.
The alternating least squares (ALS) algorithm is the “workhorse”
approach for normal CP and Tucker decompositions [1]. With
a few changes, ALS projection heuristic provides frameworks
for computing the Boolean CP and Tucker decompositions
as shown in Algorithms 1 and 2.

The framework for Boolean CP decomposition (Algo-
rithm 1) is composed of two parts: first, the initialization of
factor matrices (line 1), and second, the iterative update of
each factor matrix in turn (lines 3–5). At each step of the

Algorithm 1: Boolean CP Decomposition Frame-
work

Input: A three-way binary tensor X ∈ BI×J×K , rank R, and the
maximum number of iterations T .

Output: Binary factor matrices A ∈ BI×R, B ∈ BJ×R, and
C ∈ BK×R.

1 initialize factor matrices A, B, and C
2 for t← 1..T do
3 update A such that |X(1)−A� (C�B)>| is minimized
4 update B such that |X(2)−B� (C�A)>| is minimized
5 update C such that |X(3)−C� (B�A)>| is minimized
6 if converged then
7 break out of for loop

8 return A, B, and C

Algorithm 2: Boolean Tucker Decomposition
Framework

Input: A three-way binary tensor X ∈ BI×J×K , dimensions of
a core tensor R1, R2, and R3, and the maximum number
of iterations T .

Output: Binary factor matrices A ∈ BI×R1 , B ∈ BJ×R2 , and
C ∈ BK×R3 , and a core tensor G ∈ BR1×R2×R3 .

1 initialize factor matrices A, B, and C
2 initialize the core tensor G such that∣∣∣X−∨R1

r1=1
∨R2

r2=1
∨R3

r3=1 gr1r2r3 ar1 ◦br2 ◦ cr3

∣∣∣ is minimized

3 for t← 1..T do
4 update A such that |X(1)−A�G(1)� (C⊗B)>| is

minimized
5 update B such that |X(2)−B�G(2)� (C⊗A)>| is

minimized
6 update C such that |X(3)−C�G(3)� (B⊗A)>| is

minimized
7 update G such that∣∣∣X−∨R1

r1=1
∨R2

r2=1
∨R3

r3=1 gr1r2r3 ar1 ◦br2 ◦ cr3

∣∣∣ is
minimized

8 if converged then
9 break out of for loop

10 return A, B, C, and G

iterative update phase, the n-th factor matrix is updated given
the mode-n matricization of the input tensor X with the goal
of minimizing the difference between the input tensor X and
the approximate tensor reconstructed from the factor matri-
ces using Equation (15), while the other factor matrices are
fixed. The framework for Boolean Tucker decomposition (Al-
gorithm 2) is similar to that for Boolean CP decomposition,
except for (1) the additional initialization and update of the
core tensor in lines 2 and 7, respectively, and (2) the tensor re-
construction in lines 4–6 that involves the core tensor and the
Kronecker product between factor matrices (Equation (17))
The convergence criterion for Algorithms 1 and 2 is either
one of the following: 1) the number of iterations exceeds
the maximum value T , or 2) the sum of absolute differences
between the input tensor and the reconstructed one does not
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change significantly for two consecutive iterations (i.e., the
difference between the two errors is within a small threshold).

Using the above frameworks, Miettinen [3] proposed
Boolean CP and Tucker decomposition algorithms named
BCP ALS and BTucker ALS, respectively. However, since
both methods are designed to run on a single machine, their
scalability and performance are limited by the computing and
memory capacity of a single machine. Also, the initialization
scheme used in the two methods has high space and time
requirements which are proportional to the squares of the
number of columns of each unfolded tensor. Due to these
limitations, BCP ALS and BTucker ALS cannot scale up to
large-scale tensors.

Walk’n’Merge [2] is a different approach for Boolean CP
and Tucker factorizations. Representing the tensor as a graph,
Walk’n’Merge performs random walks on it to identify dense
blocks (which correspond to rank-1 tensors), and merge these
blocks to get larger, yet dense blocks; Walk’n’Merge orders
and selects blocks based on the Minimum Description Length
(MDL) principle for the CP decomposition, and obtains the
Tucker decomposition from the returned blocks by merg-
ing factors and adjusting the core tensor accordingly again
using the MDL principle. As a result, the dimension of a
core tensor cannot be controlled with Walk’n’Merge. While
Walk’n’Merge is a parallel algorithm, its scalability is still
limited for large-scale tensors. Since it is not a distributed
method, Walk’n’Merge suffers from the same limitations of
a single machine. Also, as the size of tensor increases, the
running time of Walk’n’Merge rapidly increases as we show
in Section 5.2.

3 Related Works

In this section, we review previous approaches for comput-
ing Boolean and normal tensor decompositions, and present
related works on the partitioning of sparse tensors, and dis-
tributed computing frameworks.

3.1 Boolean Tensor Decomposition

Leenen et al. [7] proposed the first Boolean CP decompo-
sition algorithm. Miettinen [3] presented Boolean CP and
Tucker decomposition methods along with a theoretical study
of Boolean tensor rank and decomposition. In [6], Belohlávek
et al. presented a greedy algorithm for Boolean CP decom-
position of three-way binary data. In the preliminary version
of this work [9], Park et al. propose a distributed method for
Boolean CP factorization running on the Apache Spark frame-
work. Erdős et al. [2] proposed a parallel algorithm called
Walk’n’Merge for scalable Boolean CP and Tucker decom-
positions, which performs random walks to find dense blocks

(rank-1 tensors), and obtains final CP and Tucker decom-
positions from the returned blocks by employing the MDL
principle. In [4], Erdős et al. applied the Boolean Tucker
decomposition method proposed in [2] to discover synonyms
and find facts from the subject-predicate-object triples. Find-
ing closed itemsets in N-way binary tensor [10, 11] is a re-
stricted form of Boolean CP decomposition, in which an error
of representing 0’s as 1’s is not allowed. Metzler et al. [5] pre-
sented an algorithm for Boolean tensor clustering, which is
another form of restricted Boolean CP decomposition where
one of the factor matrices has exactly one non-zero per row.

3.2 Normal Tensor Decomposition

Many algorithms have been developed for normal CP and
Tucker decompositions.

CP Decomposition. GigaTensor [12] is the first work
for large-scale CP decomposition running on MapReduce.
In [13], Jeon et al. proposed SCouT for scalable coupled
matrix-tensor factorization. Recently, tensor decomposition
methods proposed in [12–15] have been integrated into a
multi-purpose tensor mining library, BIGtensor [16]. Beutel
et al. [17] proposed FlexiFaCT, a scalable MapReduce algo-
rithm to decompose matrix, tensor, and coupled matrix-tensor
using stochastic gradient descent. ParCube [18] is a fast and
parallelizable CP decomposition method that produces sparse
factors by leveraging random sampling techniques. In [19],
Li et al. proposed AdaTM, which adaptively chooses parame-
ters in a model-driven framework for an optimal memoization
strategy so as to accelerate the factorization process. Smith
et al. [20] and Karlsson et al. [21] both developed alternating
least squares (ALS) and coordinate descent (CCD++) meth-
ods for parallel CP factorizations; [20] also explored parallel
stochastic gradient descent (SGD) method. CDTF [22] pro-
vides a scalable tensor factorization method that focuses on
non-zero elements of a tensor.

Tucker Decomposition. De Lathauwer et al. [23] pro-
posed foundational work on N-dimensional Tucker-ALS al-
gorithm. As conventional Tucker-ALS methods suffer from
limited scalability, many scalable Tucker methods have been
developed. Kolda et al. [24] proposed MET (Memory Ef-
ficient Tucker), which avoids explicitly constructing inter-
mediate data, and maximizes performance while optimally
using the available memory. S-HOT [25] further improved
the scalability of MET [24] by employing on-the-fly com-
putation, and streaming non-zeros of a tensor from the disk.
Smith et al. [26] accelerated the factorization process by
removing computational redundancies with a compressed
data structure. Jeon et al. [14] provided a scalable Tucker de-
composition method running on the MapReduce framework.
Kaya et al. [27] and Oh et al. [28] designed efficient Tucker
algorithms for sparse tensors. Chakaravarthy et al. [29] pro-
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posed optimized distributed Tucker decomposition method
for dense input tensors.

3.3 Partitioning of Sparse Tensors

For distributed tensor factorization, it is essential to use effi-
cient partitioning methods so as to maximize parallelism and
minimize communication costs between machines. There are
various partitioning approaches for decomposing sparse ten-
sors on distributed platforms. DFacTo [30] and CDTF [22]
are two systems that perform a coarse-grained partitioning of
the input tensor where independent, one-dimensional block
partitionings are performed for each tensor mode. With a
coarse-grained partitioning, each process has all the non-
zeros required for computing its output; thus the only neces-
sary communication is to exchange updated factor rows at
each iteration. However, it has the disadvantage that dense
factor matrices need to be sent to all processes in their entirety.
Hypergraph partitioning methods [27, 31] reduce communi-
cation volume via a fine-grained partitioning of the input
tensor, in which non-zeros are assigned to processes individ-
ually. However, hypergraph partitioning involves expensive
preprocessing step, which often takes more time than the
actual factorization. Recently, cartesian (or medium-grained)
partitioning methods [32–34] have gained interests due to
reduced memory and communication costs, which divide
an input tensor into a 3D grid, and factor matrices into cor-
responding groups of rows. All of the above partitioning
methods have been developed for normal tensor factoriza-
tion, where factor matrices are highly dense, and accordingly,
incur a high memory usage and communication overhead.
On the other hand, factor matrices in BTF are usually much
sparser than the normal factor matrices due to Boolean con-
straint, and BTF methods can usually process smaller tensors
than normal decomposition techniques due to high computa-
tional complexity. Considering these characteristics of BTF,
DBTF adopts a coarse grained, vertical partitioning for the
unfolded tensor, and performs a cartesian partitioning of the
input tensor, which we discuss in Section 4.5.

3.4 Distributed Computing Frameworks

MapReduce [35] is a distributed programming model for
processing large datasets in a massively parallel manner.
The advantages of MapReduce include massive scalability,
fault tolerance, and automatic data distribution and repli-
cation. Hadoop [36] is an open source implementation of
MapReduce. Due to the advantages of MapReduce, many
data mining tasks [12, 37–40] have used Hadoop. However,
due to intensive disk I/O, Hadoop is inefficient at execut-
ing iterative algorithms [41]. Apache Spark [8, 42] is a dis-
tributed data processing framework that provides capabilities

for in-memory computation and data storage. These capa-
bilities enable Spark to perform iterative computations effi-
ciently, which are common across many machine learning
and data mining algorithms, and support interactive data an-
alytics. Spark also supports various operations other than
map and reduce, such as join, filter, and groupBy. Thanks to
these advantages, Spark has been used in several domains
recently [43–47].

4 Proposed Method

In this section, we describe DBTF, our proposed method
for distributed Boolean CP (DBTF-CP) and Tucker (DBTF-
TK) factorizations. There are several challenges to efficiently
perform Boolean tensor factorization in a distributed environ-
ment.

1. Minimize intermediate data. The amount of intermedi-
ate data that are generated and shuffled across machines
affects the performance of a distributed algorithm signifi-
cantly. How can we minimize the intermediate data?

2. Minimize the number of operations. Boolean tensor
factorization is an NP-hard problem [3] with a high com-
putational cost. How can we minimize the number of
operations for factorizing Boolean tensors?

3. Identify the characteristics of Boolean tensor factor-
ization. In contrast to the normal tensor factorization,
Boolean tensor factorization applies Boolean operations
to binary data. How can we utilize the characteristics of
Boolean operations to design an efficient and scalable
algorithm?

We address the above challenges with the following main
ideas, which we describe in later subsections.

1. Distributed generation and minimal transfer of inter-
mediate data remove redundant data generation, and
reduce the amount of data transfer (Section 4.3).

2. Exploiting the characteristics of Boolean operation
and Boolean tensor factorization decreases the num-
ber of operations to update factor matrices (Section 4.4).

3. Careful partitioning of the workload facilitates reuse
of intermediate results, and minimizes data shuffling (Sec-
tion 4.5).

We give an overview of how DBTF updates factor ma-
trices (Section 4.1) and a core tensor (Section 4.2), and then
describe how we address the aforementioned scalability chal-
lenges in detail (Sections 4.3 to 4.6). After that, we discuss
implementation issues (Section 4.7), and provide a theoret-
ical analysis of DBTF (Section 4.8). While DBTF-CP and
DBTF-TK have a lot in common, DBTF-TK deals with some
additional challenges. Accordingly, we organize this section
such that Sections 4.1 to 4.5 describe ideas that apply to both
DBTF-CP and DBTF-TK, and Sections 4.2 and 4.5.2 are
dedicated to ideas that apply to DBTF-TK.
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(b) Updating a factor matrix for Boolean Tucker factorization by DBTF-TK.

Fig. 3: An overview of updating a factor matrix for (a) Boolean CP factorization by DBTF-CP, and (b) Boolean Tucker
factorization by DBTF-TK. DBTF performs a column-wise update row by row. DBTF iterates over the rows of factor
matrix for R (DBTF-CP) or R1 (DBTF-TK) column (outer)-iterations in total, updating entries of each row in column c at
column-iteration c (1≤ c≤ R for DBTF-CP, or 1≤ c≤ R1 for DBTF-TK) to the values that result in a smaller reconstruction
error. The red rectangle in A indicates the column c currently being updated; the gray rectangle in A refers to the row DBTF
is visiting in row (inner)-iteration i; blue rectangles in (C�B)> or (C⊗B)> are the rows that are Boolean summed to be
compared against the i-th row of X(1) (gray rectangle in X(1)). Vertical blocks in (C�B)>, (C⊗B)>, and X(1) represent
partitions of the data (see Section 4.5 for details on partitioning).

4.1 Updating a Factor Matrix

DBTF is a distributed method for Boolean CP (DBTF-CP)
and Tucker (DBTF-TK) factorizations based on the frame-
work described in Algorithms 1 and 2, respectively. The core
operation of DBTF-CP and DBTF-TK is updating factor
matrices (lines 3–5 in Algorithm 1, and lines 4–6 in Algo-
rithm 2). Since the update steps are similar, we focus on
updating the factor matrix A.

DBTF performs a column-wise update row by row. This
is done with doubly nested loops, where the outer loop selects
a column to update, and the inner loop iterates over the rows
of a factor matrix, updating only those entries in the column
selected by the outer loop. In other words, DBTF iterates over
the rows of factor matrix for R (DBTF-CP) or R1 (DBTF-TK)
column (outer)-iterations in total, updating entries of each
row in column c at column-iteration c (1≤ c≤ R for DBTF-

CP, or 1≤ c≤ R1 for DBTF-TK) to the values that result in
a smaller reconstruction error. This is a greedy approach that
updates each entry to the value that yields a better accuracy
while all other entries in the same row are fixed; as a result,
it does not consider all combinations of values for factor
matrix elements. We also considered an exact approach that
explores every possible value assignment, but preliminary
tests showed that the greedy heuristic performs very closely
to the exact search while being much faster than the exact
search which takes exponential time with respect to R or R1.
Figure 3 shows an overview of how DBTF updates a factor
matrix. In Figure 3, the red rectangle indicates the column c
currently being updated, and the gray rectangle in A refers to
the row DBTF is visiting in row (inner)-iteration i.

Updating a Factor Matrix in DBTF-CP. The objective
of updating the factor matrix in DBTF-CP is to minimize the
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difference between the unfolded input tensor X(1) and the
approximate tensor A� (C�B)>. Let c refer to the column
to be updated. Then, DBTF-CP computes |X(1)−A� (C�
B)>| for each of the possible values for the entries in column
c (i.e., a:c), and updates the column c to the set of values
that yield the smallest difference. In order to calculate the
difference at row-iteration i, [X(1)]i: (gray rectangle in X(1) of
Figure 3) is compared against [A� (C�B)>]i: = ai: � (C�
B)> (Figure 3(a)). Then an entry in aic is updated to the value
that gives a smaller difference, i.e.,

∣∣[X(1)]i:−ai:�(C�B)>
∣∣.

Updating a Factor Matrix in DBTF-TK. DBTF-TK
updates the factor matrix such that the difference between
X(1) and A�G(1)� (C⊗B)> is minimized. DBTF-TK cal-
culates the difference at row-iteration i by comparing [X(1)]i:
against [A�G(1) � (C⊗B)>]i: = [A�G(1)]i: � (C⊗B)>
(Figure 3(b)), and updates an entry in aic to the value resulting
in a smaller difference, i.e.,

∣∣[X(1)]i:−[A�G(1)]i:�(C⊗B)>
∣∣.

Lemma 1 ai: �B is the same as selecting rows of B that
correspond to the indices of non-zeros of ai:, and performing
a Boolean summation of those rows.

Proof This follows directly from the definition of Boolean
matrix product � (Equation (7)).

Consider Figure 3(a) as an example: since ai: is 0101
(gray rectangle in A), ai:�(C�B)> is identical to the Boolean
summation of the second and fourth rows of (C�B)> (blue
rectangles). Similarly, in Figure 3(b), [A�G(1)]i:�(C⊗B)>
is the same as the Boolean summation of the second, sixth,
and eighth rows of (C⊗B)> (blue rectangles) as [A�G(1)]i:
is 01000101.

Note that an update of the i-th row of A does not de-
pend on those of its other rows since ai: � (C� B)> or
[A � G(1)]i: � (C⊗B)> needs to be compared only with
[X(1)]i:. Therefore, the determination of whether to update an
entry of some row in a:c to 0 or 1 can be made independently
of the decisions for entries in other rows. Also, notice in
Figure 3(b) that while it is factor matrix A that DBTF-TK
tries to update, it is not the rows in A that determine which
rows in (C⊗B)> are to be summed as in Figure 3(a), but
those in the intermediate matrix A�G(1).

Depending on the distribution of non-zeros in the input
tensor, and how factor matrices and a core tensor have been
initialized and updated, the factor matrix currently being
updated may be updated to contain only zeros. When this
happens, the intermediate matrix constructed with a Khatri-
Rao (e.g., (C�B)>) or a Kronecker product (e.g., (C⊗B)>)
at the following iteration will consist of only zeros, and as a
result the difference between the approximate tensor and the
input tensor will be always the same, regardless of how the
factor matrix is updated. We handle this issue by providing
the ability to upper bound the maximum percentage of zeros
in the column being updated. When the percentage of zeros in

the current column exceeds the given threshold, DBTF finds
values different from the current assignments for a subset
of rows, which will make the sparsity of the current column
become less than the upper bound with the smallest increase
in error, and updates those rows accordingly.

4.2 Updating a Core Tensor

Boolean Tucker factorization involves an additional task of
updating a core tensor G. How DBTF-TK updates a core
tensor is based on BTucker ALS [3]. Below we describe the
main observations used by DBTF-TK and BTucker ALS for
updating G, and explain how DBTF-TK further reduces the
amount of computation.

Given the definition of Boolean Tucker decomposition
(Equation (16)), an (i, j, k)-th element of an approximate
tensor X̃ is computed as follows:

x̃i jk =
R1∨

r1=1

R2∨
r2=1

R3∨
r3=1

gr1r2r3air1b jr2ckr3 . (18)

That is, every element of G is involved with the computation
of x̃i jk, and thus flipping an element in G can affect the entire
X̃. However, we observe that the value of gr1r2r3 does not
affect the product gr1r2r3air1 b jr2ckr3 if air1b jr2ckr3 is 0. There-
fore, only those (i, j, k)s for which air1b jr2ckr3 6= 0 are con-
sidered in DBTF-TK and BTucker ALS. We also notice that,
as a result of Boolean sum, if there exists some (r1,r2,r3)

such that gr1r2r3air1b jr2ckr3 = 1, then x̃i jk = 1 regardless of
values of other elements in G.

Based on these observations, both methods compute the
partial gain of flipping the (r1,r2,r3)-th element for which
there exists some (i, j,k) such that air1b jr2ckr3 = 1, and up-
date those elements having a positive gain.

– If gr1r2r3 and x̃i jk are both 0, then there exists no (α,β ,γ) 6=
(r1,r2,r3) such that gαβγ aiα b jβ ckγ = 1. If xi jk = 1 in this
case, setting gr1r2r3 to 1 results in a partial gain, since
gr1r2r3air1b jr2ckr3 becomes 1, and x̃i jk = xi jk = 1.

– If gr1r2r3 is 1, x̃i jk is guaranteed to be 1. However, flipping
gr1r2r3 back to 0 does not necessarily lead to a partial gain
since there might be other (α,β ,γ) 6=(r1,r2,r3) such that
gαβγ aiα b jβ ckγ = 1. So in this case, under the condition
that no such (α,β ,γ) exists and xi jk is 0, setting gr1r2r3

to 0 leads to a partial gain.

We further reduce the amount of computation by utilizing
vectors sI ,sJ ,and sK , which contain the rowwise sum of en-
tries in factor matrices A,B,and C that are in those columns
selected by entries in G. Let us assume that air1b jr2ckr3 = 1
for some (i, j,k) and (r1,r2,r3). First, when gr1r2r3 = 0 and
xi jk = 1, we need to know whether x̃i jk is 0 or not in order to
compute the partial gain. We observe that x̃i jk = 0 if at least
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one of sI(i),sJ( j),and sK(k) is zero, since when this condi-
tion is satisfied, aiα b jβ ckγ = 0 for any (α,β ,γ) in G. Second,
if gr1r2r3 = 1, x̃i jk is equal to 1. When xi jk = 1 in this case, in
order to compute the partial gain, we need to know whether
there exists some (α,β ,γ) 6= (r1,r2,r3) that also contributes
to x̃i jk = 1. We note that if all of sI(i),sJ( j),and sK(k) are
equal to one, then gr1r2r3 is the only element in G that turns on
x̃i jk, since otherwise, there exists at least one other element
in G also contributing to x̃i jk, which is impossible given that
sI(i) = sJ( j) = sK(k) = 1. In both cases, vectors sI ,sJ ,and sK
help us avoid visiting elements in G repeatedly, and enable
DBTF-TK to skip the current (i, j,k) and the following ones
for which no partial gain can be obtained.

While the above ideas allow the update of a core tensor
G, updating G in a distributed environment poses a challenge
of how to distribute the workload among machines, which
we describe in Section 4.5.2.

4.3 Distributed Generation and Minimal Transfer of
Intermediate Data

The first challenge for performing Boolean tensor factoriza-
tion in a distributed manner is how to generate and distribute
the intermediate data efficiently. In particular, updating a
factor matrix involves the following types of intermediate
data: (1) a Khatri-Rao product of two factor matrices (e.g.,
(C�B)>), (2) a Kronecker product of two factor matrices
(e.g., (C⊗B)>), and (3) an unfolded tensor (e.g., X(1)).

Khatri-Rao and Kronecker Products. A naive method
for processing the Khatri-Rao and Kronecker products is
to construct the entire product first, and then distribute its
partitions across machines. While Boolean factors are known
to be sparser than the normal counterparts with real-valued
entries [5], performing the entire Khatri-Rao or Kronecker
product is still an expensive operation. Also, since one of the
two matrices involved in the product is always updated in
the previous update procedure (Algorithms 1 and 2), prior
Khatri-Rao or Kronecker products cannot be reused. Our
idea is to distribute only the factor matrices, and then let each
machine generate the part of the product it needs, which is
possible according to the definition of Khatri-Rao product,

A�B =


a11b:1 a12b:2 · · · a1Rb:R
a21b:1 a22b:2 · · · a2Rb:R

...
...

. . .
...

aI1b:1 aI2b:2 · · · aIRb:R

 , (19)

and that of Kronecker product (Equation (2)). We notice
from Equations (2) and (19) that a specific range of rows of
Khatri-Rao or Kronecker product can be constructed if we
have the two factor matrices and the corresponding range
of row indices. With this change, we only need to broadcast
relatively small factor matrices A, B, and C along with the

index ranges assigned for each machine without having to
materialize the entire product.

Unfolded Tensor. While the Khatri-Rao or Kronecker
products are computed iteratively, matricizations of an input
tensor need to be performed only once. However, in contrast
to the Khatri-Rao and Kronecker products, we cannot avoid
shuffling the entire unfolded tensor as we have no character-
istics to exploit as in the case of Khatri-Rao or Kronecker
product. Furthermore, unfolded tensors take up the largest
space during the execution of DBTF. In particular, its row
dimension quickly becomes very large as the sizes of fac-
tor matrices increase. Therefore, we partition the unfolded
tensors in the beginning, and do not shuffle them afterwards.
We do vertical partitioning of the Khatri-Rao and Kronecker
products, and unfolded tensors as shown in Figure 3 (see
Section 4.5 for more details on the partitioning of unfolded
tensors).

4.4 Exploiting the Characteristics of Boolean Operation and
Boolean Tensor Factorization

The second and the most important challenge for efficient
and scalable Boolean tensor factorization is how to minimize
the number of operations for updating factor matrices. In this
subsection, we describe the problem in detail, and present
our solution.

4.4.1 Problem

Given our procedure to update factor matrices (Section 4.1),
the two most frequently performed tasks are (1) computing
the Boolean sums of selected rows of (C�B)> (CP factoriza-
tion) or (C⊗B)> (Tucker factorization), and (2) comparing
the resulting row with the corresponding row of X(1). Assum-
ing that all factor matrices are of the same size, I-by-R, the
first task takes O(RI2) or O(R2I2) time (for CP and Tucker
factorizations, respectively), and the second task takes O(I2)

time. Since we compute the errors for both cases of when
each factor matrix entry is set to 0 and 1, each task needs
to be performed 2RI times to update a factor matrix of size
I-by-R; then, updating all three factor matrices for T itera-
tions performs each task 6T RI times in total. Due to high
computational costs and a large number of repetitions, it is
crucial to minimize the number of intermediate operations
involved with these tasks.

4.4.2 Our Solution

Overview. We start with the following observations:
– By Lemma 1, DBTF computes the Boolean sum of se-

lected rows of (C�B)> (DBTF-CP), or (C⊗B)> (DBTF-
TK). This amounts to performing a specific set of opera-
tions repeatedly, which we describe below.
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separately.

– Khatri-Rao and Kronecker products can be expressed by
vector-matrix (VM) Khatri-Rao and Kronecker products,
respectively (Equations (3) and (5)).

– Given factor matrices of size I-by-R, there are 2R and 2R2

combinations of selecting rows from (C�B)> ∈ BR×I2

and (C⊗B)> ∈ BR2×I2
, respectively.

Our main idea is to exploit the characteristics of Boolean
operation and Boolean tensor factorization as summarized in
the above observations to reduce the number of intermediate
steps to perform Boolean row summations. Figures 4 and 5
present an overview of our idea for Boolean CP and Tucker
factorizations. We note that according to Equation (4),

(C�B)> = [(c1:�B)> (c2:�B)> · · · (cK:�B)>].

Similarly, we notice that by Equation (2),

(C⊗B)> = [(c1:⊗B)> (c2:⊗B)> · · · (cK:⊗B)>].

Blue rectangles in (C�B)> and (C⊗B)> (Figures 4 and 5)
correspond to K VM Khatri-Rao products, [(c1:�B)>, . . . ,(cK:�
B)>], and K VM Kronecker products, [(c1:⊗B)>, . . . ,(cK:⊗
B)>], respectively. Since a row of (C�B)> or (C⊗B)>
is made up of a sequence of K corresponding rows of VM
Khatri-Rao or VM Kronecker products, the Boolean sum
of the selected rows of (C�B)> or (C⊗B)> can be con-
structed by summing up the same set of rows in each VM
Khatri-Rao or VM Kronecker product, and concatenating the
resulting rows into a single row.

Selecting Rows of B> in DBTF-CP. Assuming that the
row ai: is being updated as in Figure 4, we observe that com-
puting Boolean row summations of each (c j:�B)> amounts
to summing up the rows in B> that are selected by the next
two conditions. First, we choose all those rows of B> whose
corresponding entries in c j: are 1. Since all other rows are
empty vectors by the definition of Khatri-Rao product (Equa-
tion (4)), they can be ignored in computing Boolean row
summations. Second, we pick the set of rows from each
(c j:�B)> selected by the value of row ai: as they are the tar-
gets of Boolean summation. Therefore, the value of Boolean
AND (∧) between the rows ai: and c j: determines which rows
are to be used for the row summation of (c j:�B)>.

Selecting Rows of B> in DBTF-TK. Assuming that the
row ai: is being updated, we can compute Boolean row sum-
mations of each (c j:⊗B)> by employing an approach similar
to that used for Boolean CP factorization, which is to sum
up those rows in [B B . . . B]> ∈ BR3R2×J that are selected
by the non-zeros of [A�G(1)]i: and c j:, as depicted in Fig-
ure 5. While straightforward, this approach is not efficient
as in Boolean CP factorization as the number of rows of
the intermediate (c j:⊗B)> is R3 times that of (c j:�B)>.
Furthermore, we observe in Figure 5 that B> is repeatedly
involved in constructing (c j:⊗B)>; therefore, if we know
which rows of B> are to be selected by [A�G(1)]i: and c j:,
we can obtain the Boolean row summation immediately from
B>, without going over B> R3 times. Among the rows of
the m-th B> in Figure 5, which rows are to be summed is
determined by the value of Boolean AND (∧) between c jm
and [A�G(1)]i((m−1)R2+1:mR2). Thus, the Boolean OR (∨) of
all these Boolean ANDs determines which rows need to be
summed together to obtain the Boolean row summation for
(c j:⊗B)>.

Caching. In computing a row summation of (C�B)> or
(C⊗B)>, we repeatedly sum a subset of rows in B> selected
by the aforementioned conditions for each VM Khatri-Rao
or Kronecker product. Then, if we can reuse row summa-
tion results, we can avoid summing up the same set of rows
again and again. DBTF precalculates combinations of row
summations of B>, and caches the results in a table in mem-
ory. This table maps a specific subset of selected rows in
B> to its Boolean summation result. In summary, we use the
followings as a key to this cache table:

– ai:∧ c j: for Boolean CP factorization
–
∨R3

m=1 c jm∧[A�G(1)]i((m−1)R2+1:mR2) for Boolean Tucker
factorization
An issue related with this approach is that the space

required for the table increases exponentially with the rank
size. Thus, when R becomes larger than a threshold value V ,
we divide rows evenly into dR/Ve smaller groups, construct
smaller tables for each group, and then perform additional
Boolean summation of rows that we obtain from the smaller
tables.
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Fig. 5: DBTF-TK reduces intermediate operations by exploiting the characteristics of Boolean Tucker factorization. Blue
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is the target for row summation. A boolean vector k =
∨R3

m=1 c jm∧ [A�G(1)]i((m−1)R2+1:mR2) determines which rows in B>

are to be summed to compute the row summation of (c j:⊗B)> since [A�G(1)]i: � (c j:⊗B)> is equivalent to (k>�B)>.
Combinations of the row summations of B> are cached. For large R2, rows of B> are split into multiple, smaller groups, each
of which is cached separately.

Lemma 2 Given R and V , the number of required cache
tables is dR/Ve, and each table is of size 2dR/dR/Vee.

For instance, when the rank R is 18 and V is set to 10, we
create two tables of size 29, the first one storing possible
summations of b:1

>, ...,b>:9, and the second one storing those
of b:10

>, ...,b>:18. This provides a good trade-off between
space and time: while it requires additional computations for
row summations, it reduces the amount of memory used for
the tables, and also the time to construct them, which also
increases exponentially with R.

In addition to the cache table containing the row summa-
tion results of B>, we build another cache table for Boolean
Tucker factorization, which maps a set of rows of an unfolded
core tensor (e.g., G(1)) to its Boolean summation result. Note
that, in contrast to the case of Boolean CP factorization, the
row ai: is not directly used for computing a cache key in
Boolean Tucker factorization. Instead, ai: determines the set
of rows of G(1) that are to be summed, and the resulting
row summation, ai: �G(1), is then used for constructing the
cache key. In order to avoid summing up the same set of rows
in G(1) repeatedly, DBTF-TK also precomputes the combi-
nations of row summations of G(1), and stores them in an
in-memory table. For large R, this additional table is also
split into smaller ones in the same way as discussed above.

Note that the benefit of caching depends on a few factors
such as the density of factors and a core tensor, the threshold
value V , and the upper bound on the maximum percentage of
zeros in columns of a factor matrix (Section 4.1). When fac-
tors and a core tensor are updated to be sparse, it is advisable
to limit V to some small values such that we calculate combi-
nations in a small amount of time, while avoiding computing
too many combinations that are less likely to be used. When
factorizing a dense tensor, it is recommended to try a higher
value for V to benefit more from caching.

4.5 Careful Partitioning of the Workload

The third challenge is how to partition the workload effec-
tively. A partition is a unit of workload distributed across
machines. Partitioning is important since it determines the
level of parallelism and the amount of shuffled data. Our goal
is to fully utilize the available computing resources, while
minimizing the amount of network traffic. In the following
subsections, we describe how DBTF-CP and DBTF-TK par-
tition unfolded tensors (Section 4.5.1), and how DBTF-TK
partitions an input tensor (Section 4.5.2).
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Fig. 6: An overview of partitioning. DBTF partitions the
unfolded input tensor vertically into a total of N partitions
p1, p2, ..., pN , among which the l-th partition pl is shown in
detail. A partition is further divided into “blocks” (rectangles
in dashed lines) by the vertical boundaries between the un-
derlying vector-matrix (VM) Khatri-Rao (CP factorization)
or VM Kronecker (Tucker factorization) products, which cor-
respond to blue rectangles. Numbers in pl refer to the types
of blocks a partition can be split into.

4.5.1 Unfolded Tensors

As introduced in Section 4.3, DBTF partitions the unfolded
tensor vertically: a single partition covers a range of con-
secutive columns. The main reason for choosing vertical
partitioning instead of horizontal one is because with vertical
partitioning, each partition can perform Boolean summations
of the rows assigned to it and compute their errors indepen-
dently, with no need of communications between partitions.
On the other hand, with horizontal partitioning, each parti-
tion needs to communicate with others to be able to compute
the Boolean row summations. Furthermore, horizontal parti-
tioning splits the dimensionality I, which is usually smaller
than the product of dimensionalities KJ. Thus, the maximum
number of partitions supported by horizontal partitioning is
normally smaller than that by vertical partitioning, which
could lower the level of parallelism.

Since the workloads are vertically partitioned, each par-
tition computes an error only for the vertically split part of
the row distributed to it. Therefore, errors from all parti-
tions should be considered together to make the decision of
whether to update an entry to 0 or 1. DBTF collects from
all partitions the errors for the entries in the column being
updated, and sets each one to the value with the smallest
error.

DBTF further splits the vertical partitions of an unfolded
tensor in a computation-friendly manner. By “computation-
friendly”, we mean structuring the partitions in such a way
that facilitates an efficient computation of row summation
results as discussed in Section 4.4. This is crucial since the

number of operations performed directly affects the perfor-
mance of DBTF. The target for row summation in DBTF is
B> as shown in Figures 4 and 5. However, the horizontal
length of each partition is not always the same as or a multiple
of that of B>. Depending on the number of partitions, and the
size of C and B, a partition may cross the vertical boundaries
of multiple VM Khatri-Rao or Kronecker products, or may
be shorter than one VM Khatri-Rao or Kronecker product.

Figure 6 presents an overview of our idea for computation-
friendly partitioning in DBTF. DBTF partitions the unfolded
input tensor into a total of N partitions p1, p2, ..., pN , among
which the l-th partition pl is shown in detail. A partition
is further divided into “blocks” (rectangles in dashed lines)
by the vertical boundaries between the underlying Khatri-
Rao (CP factorization) or Kronecker (Tucker factorization)
products, which correspond to blue rectangles. Numbers in
pl refer to the types of blocks a partition can be split into.
Since the target for row summation is B>, with this organiza-
tion, each block of a partition can efficiently obtain its row
summation results.

Lemma 3 A partition can have at most three types of blocks.

Proof There are four different types of blocks—(1), (2), (3),
and (4)—as shown in Figure 6. If the horizontal length of a
partition is smaller than or equal to that of a single Khatri-
Rao or Kronecker product, it can consist of up to two blocks.
When the partition does not cross the vertical boundary be-
tween Khatri-Rao or Kronecker products, it consists of a
single block, which corresponds to one of the four types (1),
(2), (3), and (4). On the other hand, when the partition crosses
the vertical boundary between products, it consists of two
blocks of types (2) and (4).

If the horizontal length of a partition is larger than that of
a single Khatri-Rao or Kronecker product, multiple blocks
comprise the partition: possible combinations of blocks are
(2)+(3)*+(4), (3)++(4)?, and (2)?+(3)+ where the star (*)
superscript denotes that the preceding type is repeated zero or
more times, the plus (+) superscript denotes that the preced-
ing type is repeated one or more times, and the question mark
(?) superscript denotes that the preceding type is repeated
zero or one time. Thus, in all cases, a partition can have at
most three types of blocks.

An issue with respect to the use of caching is that the
horizontal length of blocks of types (1), (2), and (4) is smaller
than that of a single Khatri-Rao or Kronecker product. If a
partition has such blocks, we compute additional cache tables
for the smaller blocks from the full-size one so that these
blocks can also exploit caching. By Lemma 3, at most two
smaller tables need to be computed for each partition, and
each one can be built efficiently as constructing it requires
only a single pass over the full-size cache.
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Partitioning is a one-off task in DBTF. DBTF constructs
these partitions in the beginning, and caches the entire parti-
tions for efficiency.

4.5.2 Input Tensor

DBTF-TK updates a core tensor G at each iteration (Algo-
rithm 2). In DBTF-TK, an input tensor X is necessary for
updating G: as described in Section 4.2, the way DBTF-TK
updates an element gr1r2r3 of a core tensor requires access-
ing an input tensor element xi jk for all i, j, and k for which
air1b jr2ckr3 = 1.

For distributed computation, the workload of updating a
core tensor G needs to be partitioned across the cluster. Con-
sidering that G is updated entry by entry in DBTF-TK, and
updating each element of G requires accessing an input tensor
X entry by entry, we take into account two different workload
partitioning approaches: (1) partitioning the core tensor G,
and (2) partitioning the input tensor X. Partitioning the core
tensor indicates that entries in different partitions of G are up-
dated concurrently. However, in DBTF-TK, updating an entry
(α,β ,γ) in G involves accessing (α ′,β ′,γ ′) 6= (α,β ,γ). As
each partition updates a different part of G, different parti-
tions may have different views of G, which would result in
an incorrect update. Thus it is not possible to update different
entries in G concurrently. By partitioning the input tensor, on
the other hand, only one entry of G is updated at a time, while
entries in different partitions of an input tensor X are pro-
cessed in parallel. In this way, all partitions share the global
view of the core tensor, and each partition computes the par-
tial gain that can be obtained by flipping an entry (α,β ,γ) in
G with regard to the entries of an input tensor assigned to it.

DBTF-TK partitions the input tensor X into a total of
N non-overlapping subtensors pX1, pX1, . . . , pXN such that
they satisfy the following conditions:
1. pXt is associated with three ranges, It , Jt , and Kt , such

that |Ii|×|Ji|×|Ki| ≈ |I j|×|J j|×|K j| for all i, j ∈ [1 .. N].
2. pXt contains all xi jk ∈X for i ∈ It , j ∈ Jt , and k ∈ Kt .
3.
⋃N

t=1 pXt = X, and pXi ∩ pX j = /0 for all i, j ∈ [1 .. N]

(i 6= j).
With the input tensor partitioned as above, the parallel up-
dates of a core tensor G in N partitions are synchronized on
the update of each entry in G.

4.6 Putting Things Together

In this section, we present algorithms for DBTF, and pro-
vide a brief description of their relationships: DBTF-CP is
given in Algorithms 3 to 7, and DBTF-TK is presented in
Algorithms 4 and 6 to 11. The “distributed” keyword in the
algorithm indicates that the marked section is performed in
a fully distributed manner. We also briefly summarize what
data are transferred across the network.

Algorithm 3: DBTF-CP Algorithm
Input: a three-way binary tensor X ∈ BI×J×K , rank R, the

maximum number of iterations T , the number of sets of
initial factor matrices L, the number of partitions N,
and a threshold value V to limit the size of a single
cache table.

Output: binary factor matrices A ∈ BI×R, B ∈ BJ×R, and
C ∈ BK×R.

1 pX(1)← PartitionUnfoldedTensor(X(1),N)

2 pX(2)← PartitionUnfoldedTensor(X(2),N)

3 pX(3)← PartitionUnfoldedTensor(X(3),N)

4 for t← 1, . . . ,T do
5 if t = 1 then
6 initialize L sets of factor matrices

(A1,B1,C1), . . . ,(AL,BL,CL) randomly where Ai ∈
BI×R,Bi ∈ BJ×R, and Ci ∈ BK×R for i = 1,2, . . . ,L

7 apply UpdateFactors to each set, and find the set
smin with the smallest error

8 (A,B,C)← smin

9 else
10 (A,B,C)← UpdateFactors(A,B,C)

11 if converged then
12 break out of for loop

13 return A, B, C

14 Function UpdateFactors(A,B,C)
/* minimize

∣∣X(1)−A� (C�B)>
∣∣ */

15 A← UpdateFactorCP(pX(1),A,C,B,V )

/* minimize
∣∣X(2)−B� (C�A)>

∣∣ */

16 B← UpdateFactorCP(pX(2),B,C,A,V )

/* minimize
∣∣X(3)−C� (B�A)>

∣∣ */

17 C← UpdateFactorCP(pX(3),C,B,A,V )

18 return A,B,C

Algorithm 4: PartitionUnfoldedTensor
Input: an unfolded binary tensor X ∈ BP×Q, and the number

of partitions N.
Output: a partitioned unfolded tensor pX ∈ BP×Q.

1 distributed (D): split X into non-overlapping partitions
p1, p2, . . . , pN such that [p1 p2 . . . pN ] ∈ BP×Q, and

∀i ∈ {1, ...,N}, pi ∈ BP×H where
⌊

Q
N

⌋
≤ H ≤

⌈
Q
N

⌉
2 pX← [p1 p2 . . . pN ]
3 D: foreach p′ ∈ pX do
4 further split p′ into a set of blocks divided by the

boundaries of underlying pointwise vector-matrix
products as depicted in Figure 6 (see Section 4.5)

5 D: cache pX across machines
6 return pX

4.6.1 Partitioning

DBTF-CP and DBTF-TK first partition the unfolded input
tensors (lines 1–3 in Algorithms 3 and 8): each unfolded
tensor is vertically partitioned and then cached across ma-
chines (Algorithm 4). In addition to the unfolded input tensor,
DBTF-TK also partitions and caches the input tensor (Algo-
rithm 9).
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4.6.2 Updating Factor Matrices and a Core Tensor

DBTF-CP and DBTF-TK initialize L sets of factor matrices
(line 6 in Algorithm 3 and line 7 in Algorithm 8, respec-
tively). Instead of initializing a single set of factor matrices,
DBTF allows initializing multiple sets as better initial factor
matrices could lead to more accurate factorization. DBTF-
CP updates all of them in the first iteration, and runs the
following iterations with the factor matrices that obtained
the smallest error (lines 7–8 in Algorithm 3). After initial-
izing factor matrices, DBTF-TK also prepares core tensors
for each set of factor matrices (line 9 in Algorithm 8), and
finds the set of factor matrices and a core tensor with the
smallest error (lines 10–11 in Algorithm 8). In each iteration,
factor matrices are updated one at a time, while the other
two are fixed (lines 15–17 in Algorithm 3 and lines 19–21 in
Algorithm 8). In DBTF-TK, the core tensor is also updated
before factor matrices are updated (line 13 in Algorithm 8).

Updating a Factor Matrix. The procedures for updating
a factor matrix are shown in Algorithm 5 (DBTF-CP) and
Algorithm 10 (DBTF-TK). Note that their core operations—
computing a Boolean row summation and its error—are
performed in a fully distributed manner (lines 7–9 in Al-
gorithm 5, and lines 7–11 in Algorithm 10). DBTF caches
combinations of Boolean row summations of a factor ma-
trix (Algorithm 6) at the beginning of UpdateFactorCP

and UpdateFactorTK to avoid repeatedly computing them.
DBTF-TK additionally caches the combinations of row sum-
mation results of an unfolded core tensor (line 2 in Al-
gorithm 10). DBTF-CP and DBTF-TK fetch the cached
Boolean summation results in an almost identical manner, ex-
cept that they use different cache keys (line 7 in Algorithm 5,
and line 9 in Algorithm 10). DBTF collects errors computed
across machines, and updates the current column DBTF is
visiting (lines 10–14 in Algorithm 5, and lines 12–16 in Al-
gorithm 10). Boolean factors are repeatedly updated until
convergence, that is, until the reconstruction error does not
decrease significantly, or a maximum number of iterations
has been reached.

Updating a Core Tensor. The procedure for updating a
core tensor is given in Algorithm 11. DBTF-TK computes
the partial gain of flipping an element of a core tensor G in a
fully distributed fashion (lines 4–25 in Algorithm 11), and
determines its value using the sum of collected gains (lines
26–27 in Algorithm 11).

4.6.3 Network Transfer

In DBTF-CP and DBTF-TK, the following data are sent to
each machine: partitions of unfolded tensors are distributed
across machines once in the beginning, and factor matrices
A,B, and C are broadcast to each machine at each iteration.
DBTF-TK sends out further data: partitions of an input ten-

Algorithm 5: UpdateFactorCP
Input: a partitioned unfolded tensor pX ∈ BP×QS, factor

matrices A ∈ BP×R (factor matrix to update),
M f ∈ BQ×R (first matrix for the Khatri-Rao product),
and Ms ∈ BS×R (second matrix for the Khatri-Rao
product), a threshold value V to limit the size of a
single cache table, and the maximum percentage Z of
zeros in the column being updated.

Output: an updated factor matrix A.
1 AugmentPartitionWithRowSummations(pX, Ms, V )
/* iterate over columns and rows of A */

2 for column iter c← 1 . . .R do
3 for row r← 1 . . .P do
4 for arc← 0,1 do
5 distributed: foreach partition p′ ∈ pX do
6 foreach block b ∈ p′ do
7 compute the cache key k← ar:∧ [M f ]i:

where i is the row index of M f such
that block b is within the vertical
boundaries of underlying
([M f ]i:�Ms)

>

8 v← using k, fetch the cached Boolean
row summation that corresponds to
ar: � ([M f ]i:�Ms)

>

9 compute the error between the fetched
row v and the corresponding part of
pxr:

10 collect errors for the entries of column a:c from all blocks
(for both cases of when each entry is set to 0 and 1)

11 for row r← 1 . . .P do /* update a:c */

12 update arc to the value that yields a smaller error (i.e.,∣∣xr:−ar: � (M f �Ms)
>∣∣)

13 if the percentage of zeros in a:c > Z then
14 find new values for a subset of rows which will make

a:c to obey Z with the smallest increase in error, and
update those rows accordingly.

15 return A

sor are distributed once in the beginning, a core tensor is
transferred when factor matrices are updated, and flipped
elements of a core tensor are distributed when a core tensor
is updated.

In both DBTF-CP and DBTF-TK, machines send interme-
diate errors back to the driver node for the update of columns
of a factor matrix. In DBTF-TK, each machine additionally
sends the partial gain back to the driver node in order to
update a core tensor.

4.7 Implementation

In this section, we discuss practical issues pertaining to the
implementation of DBTF on Spark. We use sparse representa-
tion for tensors and matrices, storing only non-zero elements,
except for those factor matrices to which we apply Boolean
AND operation to compute a cache key, which we repre-
sent as an array of BitSet. An input tensor is loaded as an
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Algorithm 6: AugmentPartitionWithRowSummations
Input: a partitioned unfolded tensor pX ∈ BP×QS, a matrix for

caching Mc ∈ BS×R, and a threshold value V to limit
the size of a single cache table.

1 distributed: foreach partition p′ ∈ pX do
2 Ti← GenerateRowSummations(Mc,V)

3 foreach block b ∈ p′ do
4 if block b is of the type (1), (2), or (4) as shown in

Figure 6, vertically slice Ti such that the sliced one
corresponds to block b

5 cache (the sliced) Ti if not cached, and augment
partition p′ with it

Algorithm 7: GenerateRowSummations
Input: a matrix for caching Mc ∈ BS×R, and a threshold value

V to limit the size of a single cache table.
Output: a table Tm that contains mappings from a set of rows

in Mc to its summation result
1 Tm← all combinations of row summations of Mc (if S >V ,

divide the rows of Mc evenly into smaller groups of rows,
and generate combinations of row summations from each one
separately)

2 return Tm

RDD (Resilient Distributed Datasets) [8], and unfolded us-
ing RDD’s map function. We apply map and combineByKey
operations to unfolded tensors for partitioning: map trans-
forms an unfolded tensor into a pair RDD whose key is a
partition ID; combineByKey groups non-zeros by partition ID
and organizes them into blocks. In Tucker factorization, we
similarly use map and groupByKey operations, to divide the
input tensor RDD into partitions, in which non-zeros are orga-
nized as a set, since DBTF-TK queries the existence of tensor
entries in updating the core tensor. Partitioned unfolded ten-
sor RDDs and the input tensor RDD are then persisted in
memory. We create a pair RDD containing combinations of
row summations, which is keyed by partition ID and joined
with the partitioned unfolded tensor RDD. This joined RDD
is processed in a distributed manner using mapPartitions op-
eration. In obtaining the key to the table for row summations,
we use bitwise AND operation for efficiency. At the end of
column-wise iteration, a driver node collects errors computed
from each partition to update columns. DBTF-TK updates
the core tensor entry by entry. In each iteration, executors
process the partitioned input tensor in parallel using foreach-
Partition operation, computes the partial gains of flipping the
current core tensor entry and aggregates them using an accu-
mulator. In order to upper bound the maximum percentage
of zeros in the columns of the factor matrix being updated,
we use a priority queue in which an inverse of the error of
each candidate value (binary values assigned to the entries in
each row which belong to the column being updated) is used
as a priority. While the percentage of zeros is greater than the
threshold, an element with the highest priority is popped off

Algorithm 8: DBTF-TK Algorithm
Input: a three-way binary tensor X ∈ BI×J×K , dimensions of a

core tensor R1, R2, and R3, the maximum number of
iterations T , the number of sets of initial factor
matrices L, the number of partitions N, and a threshold
value V to limit the size of a single cache table.

Output: binary factor matrices A ∈ BI×R1 , B ∈ BJ×R2 , and
C ∈ BK×R3 , and a core tensor G ∈ BR1×R2×R3 .

1 pX(1)← PartitionUnfoldedTensor(X(1),N)

2 pX(2)← PartitionUnfoldedTensor(X(2),N)

3 pX(3)← PartitionUnfoldedTensor(X(3),N)

4 pX← PartitionInputTensor(X,N)
5 for t← 1, . . . ,T do
6 if t = 1 then
7 initialize L sets of factor matrices

(A1,B1,C1), . . . ,(AL,BL,CL) randomly where
Ai ∈ BI×R1 ,Bi ∈ BJ×R2 , and Ci ∈ BK×R3 for i =
1,2, . . . ,L

8 initialize L sets of core tensors G1, . . . ,GL randomly
9 Gi← UpdateCore(pX,Gi,Ai,Bi,Ci) for

i = 1,2, . . . ,L
10 apply UpdateFactors to each set (Ai,Bi,Ci,Gi) for

i = 1,2, . . . ,L, and find the set smin with the smallest
error

11 (A,B,C,G)← smin

12 else
13 G← UpdateCore(pX,G,A,B,C)
14 (A,B,C)← UpdateFactors(A,B,C,G)

15 if converged then
16 break out of for loop

17 return A,B,C,G

18 Function UpdateFactors(A,B,C,G)
/* minimize

∣∣X(1)−A�G(1)� (C⊗B)>
∣∣ */

19 A← UpdateFactorTucker(pX(1),A,C,B,G(1),V )

/* minimize
∣∣X(2)−B�G(2)� (C⊗A)>

∣∣ */

20 B← UpdateFactorTucker(pX(2),B,C,A,G(2),V )

/* minimize
∣∣X(3)−C�G(3)� (B⊗A)>

∣∣ */

21 C← UpdateFactorTucker(pX(3),C,B,A,G(3),V )

22 return A,B,C

Algorithm 9: PartitionInputTensor
Input: a three-way binary tensor X ∈ BI×J×K , and the number

of partitions N.
Output: a partitioned input tensor pX ∈ BI×J×K .

1 distributed (D): split X into pX, which consists of
non-overlapping subtensors pX1, pX1, . . . , pXN where (1)
pXt is associated with three ranges, It , Jt , and Kt , such that
|Ii|× |Ji|× |Ki| ≈ |I j|× |J j|× |K j| for all i, j ∈ [1 .. N]; (2)
pXt contains all xi jk ∈X for i ∈ It , j ∈ Jt , and k ∈ Kt ; and (3)⋃N

t=1 pXt =X and pXi∩ pX j = /0 for all i, j ∈ [1 .. N] (i 6= j)
2 D: cache pX across machines
3 return pX

the priority queue, and replaces the corresponding, current
value provided that it decreases the percentage of zeros.
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Algorithm 10: UpdateFactorTucker
Input: a partitioned unfolded tensor pX ∈ BP×QS, factor

matrices A ∈ BP×R (factor matrix to update),
M f ∈ BQ×R f (first matrix for the Kronecker product),
and Ms ∈ BS×Rs (second matrix for the Kronecker
product), an unfolded core tensor G, a threshold value
V to limit the size of a single cache table, and the
maximum percentage Z of zeros in the column being
updated.

Output: an updated factor matrix A.
1 AugmentPartitionWithRowSummations(pX, Ms, V )
2 Tg← GenerateRowSummations(G,V)

/* iterate over columns and rows of A */

3 for column iter c← 1 . . .R do
4 for row r← 1 . . .P do
5 for arc← 0,1 do
6 distributed: foreach partition p′ ∈ pX do
7 g← using ar:, fetch the cached Boolean row

summation from Tg that corresponds to
ar: �G

8 foreach block b ∈ p′ do
9 compute the cache key

k←
∨R f

m=1[M f ]im∧g((m−1)Rs+1:mRs)

where i is the row index of M f such
that block b is within the vertical
boundaries of underlying
([M f ]i:⊗Ms)

>

10 v← using k, fetch the cached Boolean
row summation that corresponds to
[ar: �G]� ([M f ]i:⊗Ms)

>

11 compute the error between the fetched
row v and the corresponding part of
pxr:

12 collect errors for the entries of columns a:c from all blocks
(for both cases of when each entry is set to 0 and 1)

13 for row r← 1 . . .P do /* update a:c */

14 update arc to the value that yields a smaller error (i.e.,∣∣xr:−ar: �G� (M f ⊗Ms)
>∣∣)

15 if the percentage of zeros in a:c > Z then
16 find new values for a subset of rows which will make

a:c to obey Z with the smallest increase in error, and
update those rows accordingly.

17 return A

4.8 Analysis

We analyze the proposed method in terms of time complexity,
memory requirement, and the amount of shuffled data. We
use the following symbols in the analysis: R (rank or the
dimension of each mode of a core tensor), M (number of
machines), T (number of maximum iterations), N (number
of partitions), V (maximum number of rows for caching, and
Z (maximum percentage of zeros in the columns being up-
dated). For the sake of simplicity, we assume an input tensor
X ∈ BI×I×I and a core tensor G ∈ BR×R×R, and that DBTF
initializes a single set of factor matrices and a core tensor.
Also, based on symbol definitions, we make simplifying as-

Algorithm 11: UpdateCore
Input: a partitioned input tensor pX ∈ BI×J×K , a core tensor

G ∈ BR1×R2×R3 , and factor matrices A ∈ BI×R1 ,
B ∈ BJ×R2 , and C ∈ BK×R3 .

Output: an updated core tensor G.
1 for (r1,r2,r3) ∈ [1 .. R1]× [1 .. R2]× [1 .. R3] do
2 gain← 0
3 sI ,sJ ,sK ← rowwise sum of entries in A,B, and C

that are in those columns selected by entries in G

4 distributed: foreach subtensor pXt ∈ pX do
5 It ,Jt ,Kt ← three ranges associated with pXt
6 if gr1r2r3 = 0 then
7 foreach i ∈ It such that air1 = 1 do
8 cI ← sI(i) = 0
9 foreach j ∈ Jt such that b jr2 = 1 do

10 cIJ ← cI or sJ( j) = 0
11 foreach k ∈ Kt such that ckr3 = 1 do
12 cIJK ← cIJ or sK(k) = 0
13 if cIJK and pxi jk = 1 then
14 gain← gain+1
15 break out of all foreach loops

16 else
17 foreach i ∈ It such that air1 = 1 do
18 if sI(i) 6= 1 then continue
19 foreach j ∈ Jt such that b jr2 = 1 do
20 if sJ( j) 6= 1 then continue
21 foreach k ∈ Kt such that ckr3 = 1 do
22 if sK(k) 6= 1 then continue
23 if pxi jk = 0 then
24 gain← gain+1
25 break out of all foreach loops

26 if gain > 0 then
27 gr1r2r3 ← 1−gr1r2r3

28 return G

sumptions that N� I, R� I, and R2 ≤ I. All proofs of the
following lemmas appear in the appendix.

4.8.1 Analysis of DBTF-CP

Lemma 4 The time complexity of DBTF-CP is O
(
T I3R

⌈ R
V

⌉
+

T N
⌈ R

V

⌉
2dR/dR/VeeI

)
.

Lemma 5 The memory requirement of DBTF-CP is O(|X|+
NI
⌈ R

V

⌉
2dR/dR/Vee+MRI).

Lemma 6 The amount of shuffled data for partitioning an
input tensor X is O(|X|).

Lemma 7 The amount of shuffled data after the partitioning
of an input tensor X is O(T RI(M+N)).

4.8.2 Analysis of DBTF-TK

Lemma 8 The time complexity of DBTF-TK is O
(
T I3R3 +

T N
⌈ R

V

⌉
2dR/dR/VeeI

)
.
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Table 3: Summary of real-world and synthetic tensors used
for experiments. B: billion, M: million, K: thousand.

Name I J K Non-Zeros

Facebook 64K 64K 870 1.5M
DBLP 418K 3.5K 50 1.3M

CAIDA-DDoS-S 9K 9K 4K 22M
CAIDA-DDoS-L 9K 9K 393K 331M

NELL-S 15K 15K 29K 77M
NELL-L 112K 112K 213K 18M

Synthetic-scalability 26∼213 26∼213 26∼213 26K∼5.5B
Synthetic-CP-error 100 100 100 6.5K∼240K
Synthetic-TK-error 100 100 100 1.5K∼45K

Lemma 9 The memory requirement of DBTF-TK is O(|X|+
(N +M)I

⌈ R
V

⌉
2dR/dR/Vee).

Lemma 10 The amount of shuffled data for partitioning an
input tensor X is O(|X|).

Lemma 11 The amount of shuffled data after the partition-
ing of an input tensor X is O(T RI(M +N)+ T R3(MR3 +

N)+T MR2
⌈ R

V

⌉
2dR/dR/Vee).

5 Experiments

In this section, we experimentally evaluate our proposed
method DBTF. We aim to answer the following questions.

Q1 Data Scalability (Section 5.2). How well do DBTF and
other methods scale up with respect to the following
aspects of an input tensor: number of non-zeros, dimen-
sionality, density, and rank?

Q2 Machine Scalability (Section 5.3). How well does DBTF
scale up with respect to the number of machines?

Q3 Reconstruction Error (Section 5.4). How accurately do
DBTF and other methods factorize the given tensor?

We introduce the datasets, baselines, and experimental
environment in Section 5.1. After that, we answer the above
questions in Sections 5.2 to 5.4.

5.1 Experimental Settings

5.1.1 Datasets

We use both real-world and synthetic tensors to evaluate the
proposed method. The tensors used in experiments are listed
in Table 3. For real-world tensors, we use Facebook, DBLP,
CAIDA-DDoS-S, CAIDA-DDoS-L, NELL-S, and NELL-
L. Facebook1 is temporal relationship data between users.

1 http://socialnetworks.mpi-sws.org/data-wosn2009.

html

DBLP2 is a record of DBLP publications. CAIDA-DDoS3

datasets are traces of network attack traffic. NELL datasets
are knowledge base tensors. S (small) and L (large) suffixes
indicate the relative size of the dataset.

We prepare two different sets of synthetic tensors, one
for scalability tests and another for reconstruction error tests.
For scalability tests, we generate random tensors, varying
the following aspects: (1) dimensionality and (2) density. We
vary one aspect while fixing others to see how scalable DBTF
and other methods are with respect to a particular aspect. For
reconstruction error tests, we generate three random factor
matrices, construct a noise-free tensor from them, and then
add noise to this tensor, while varying the following aspects:
(1) factor matrix density, (2) rank, (3) additive noise level,
and (4) destructive noise level. When we vary one aspect,
others are fixed. The amount of noise is determined by the
number of 1’s in the noise-free tensor. For example, 10%
additive noise indicates that we add 10% more 1’s to the
noise-free tensor, and 5% destructive noise means that we
delete 5% of the 1’s from the noise-free tensor.

5.1.2 Baselines

In experiments for Boolean CP factorization, we compare
DBTF-CP with Walk’n’Merge [2] and BCP ALS [3]. We also
implemented an algorithm for Boolean CP decomposition of
three-way binary data presented in [6], but found its results
to be much worse than Walk’n’Merge and BCP ALS (e.g., it
takes three orders of magnitude more time than BCP ALS
and Walk’n’Merge for a tensor of size I=J=K=27). So we
omit reporting its results for the sake of clarity. In experi-
ments for Boolean Tucker factorization, we compare DBTF-
TK with Walk’n’Merge [2] and BTucker ALS [3].

5.1.3 Environment

DBTF is implemented on the Apache Spark framework. We
run experiments on a cluster with 17 machines, each of which
is equipped with an Intel Xeon E3-1240v5 CPU (quad-core
with hyper-threading at 3.50GHz) and 32GB RAM. The clus-
ter runs Apache Spark v2.2.0, and consists of a driver node
and 16 worker nodes. In the experiments for DBTF, we use
16 executors, and each executor uses 8 cores. The amount
of memory for the driver and each executor process is set
to 16GB and 25GB, respectively. DBTF parameters L, V ,
and Z are set to 1, 15, and 0.95, respectively, and T is set to
10 for scalability tests and 20 for reconstruction error tests
(see Algorithms 3, 5 to 8 and 10 for details on these parame-
ters). We run Walk’n’Merge, BCP ALS, and BTucker ALS
on one machine in the cluster. For the CP factorization by

2 http://www.informatik.uni-trier.de/~ley/db/
3 http://www.caida.org/data/passive/ddos-20070804_

dataset.xml

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.informatik.uni-trier.de/~ley/db/
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
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Walk’n’Merge, we use the original implementation4 provided
by the authors. However, the open-source implementation of
Walk’n’Merge does not contain code for the Tucker factoriza-
tion, which is obtained based on the CP factorization output
of Walk’n’Merge. We implement the missing part, which is to
merge the factor matrices returned from Walk’n’Merge, and
adjust the core tensor accordingly. We run Walk’n’Merge
with the same parameter settings as described in [2]. The
minimum size of blocks is set to 4-by-4-by-4. The length of
random walks is set to 5. In reconstruction error tests, the
merging threshold t is set to 1− (nd +0.05) for CP factoriza-
tion, and it is set to 1− (nd + 0.5) for Tucker factorization
where nd is the destructive noise level of an input tensor.
Since Walk’n’Merge did not find blocks when it performs
Tucker factorization with the threshold value used for CP
factorization, we used smaller values for Tucker factoriza-
tion. For scalability tests, t is set to 0.2 for both types of
factorizations. Other parameters are set to the default val-
ues. We implement BCP ALS and BTucker ALS using the
open-source code of ASSO5[48]. For ASSO, the threshold
value for discretization is set to 0.7; default values are used
for other parameters.

5.2 Data Scalability

We evaluate the data scalability of DBTF and other meth-
ods for Boolean CP and Tucker factorizations using both
synthetic random tensors (Sections 5.2.1 and 5.2.2), and real-
world tensors (Sections 5.2.3 and 5.2.4).

5.2.1 Boolean CP Factorization on Synthetic Data

We evaluate the data scalability of DBTF-CP, Walk’n’Merge,
and BCP ALS on synthetic tensors with respect to the di-
mensionality, density, and rank of a tensor. Experiments are
allowed to run for up to 6 hours, and those running longer
than that are marked as O.O.T. (Out-Of-Time).

Dimensionality. We increase the dimensionality I=J=K
of each mode from 26 to 213, while setting the tensor density
to 0.01 and the rank R to 10. As shown in Figure 7(a), DBTF-
CP successfully decomposes tensors of size I=J=K=213,
while Walk’n’Merge and BCP ALS run out of time when
I=J=K ≥ 29 and ≥ 210, respectively. Notice that the run-
ning time of Walk’n’Merge and BCP ALS increases rapidly
with the dimensionality: DBTF-CP decomposes the largest
tensors Walk’n’Merge and BCP ALS can process 180× and
82× faster than each method. DBTF-CP is slower than other
methods for small tensors of 26 and 27 scale, because the

4 http://people.mpi-inf.mpg.de/~pmiettin/src/

walknmerge.zip
5 http://people.mpi-inf.mpg.de/~pmiettin/src/

DBP-progs/

overhead of running a distributed algorithm on Spark (e.g.,
code and data distribution, network I/O latency, etc) domi-
nates the running time in these cases.

Density. We increase the tensor density from 0.01 to
0.3, while fixing I=J=K to 28 and the rank R to 10. As
shown in Figure 7(b), DBTF-CP decomposes tensors of all
densities, and exhibits near constant performance regardless
of the density. BCP ALS also scales up to 0.3 density. On
the other hand, Walk’n’Merge runs out of time when the
density increases over 0.1. In terms of running time, DBTF-
CP runs 343× faster than Walk’n’Merge, and 43× faster than
BCP ALS. Also, the performance gap between DBTF-CP
and BCP ALS grows wider for tensors with greater density.

Rank. We increase the rank R of a tensor from 60 to 240,
while fixing I=J=K to 28 and the tensor density to 0.01. V
is set to 15 in all experiments. Walk’n’Merge is excluded
from this experiment since its running time is constant across
different ranks. As shown in Figure 7(c), both methods scale
up to rank 240, and the running time increases almost linearly
as the rank increases. When the rank is 240, DBTF-CP is
21× faster than BCP ALS.

5.2.2 Boolean Tucker Factorization on Synthetic Data

We evaluate the data scalability of DBTF-TK, Walk’n’Merge,
and BTucker ALS. Experiments that run longer than 12 hours
are marked as O.O.T. (Out-Of-Time).

Dimensionality. We increase the dimensionality I=J=K
of each mode from 26 to 212 while setting the tensor density
to 0.01 and the core size R1=R2=R3=4 (Figure 8(a)). While
DBTF-TK is slower than BTucker ALS and Walk’n’Merge
for small tensors of 26 and 27 scale due to the overhead
associated with a distributed system, the running time of
BTucker ALS and Walk’n’Merge increases much more rapidly
than that of DBTF-TK. As a result, DBTF-TK is the only
method that successfully decomposes tensors of I=J=K=212,
while Walk’n’Merge and BTucker ALS run out of time when
I=J=K ≥ 29 and ≥ 210, respectively. Furthermore, DBTF-
TK decomposes the largest tensors that Walk’n’Merge and
BTucker ALS can handle 129× and 86× faster than each
method.

Density. We increase the tensor density from 0.01 to 0.3,
while fixing I=J=K to 28 and the core size R1=R2=R3 to
4. Figure 8(b) shows that DBTF-TK decomposes tensors of
all densities, and its running time remains almost the same
as the density increases. BTucker ALS also scales up to the
tensor with 0.3 density. However, Walk’n’Merge runs out of
time when the density becomes greater than 0.1, and even
when it is 0.05. In terms of running time, DBTF-TK runs
234× and 35× faster than Walk’n’Merge and BTucker ALS,
respectively.

Rank. We increase the core size R1=R2=R3 from 4 to
40, while fixing I=J=K to 28 and the tensor density to

http://people.mpi-inf.mpg.de/~pmiettin/src/walknmerge.zip
http://people.mpi-inf.mpg.de/~pmiettin/src/walknmerge.zip
http://people.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/
http://people.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/
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Fig. 7: The scalability of DBTF-CP and other methods with respect to the dimensionality and density of a tensor, and the rank
of CP decomposition. O.O.T.: Out Of Time (takes more than 6 hours). DBTF-CP decomposes up to 163–323× larger tensors
than existing methods in 82–180× less time (Figure 7(a)). Overall, DBTF-CP achieves 21–343× speed-up, and exhibits
near-linear scalability with regard to all data aspects.
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Fig. 8: The scalability of DBTF-TK and other methods with respect to the dimensionality and density of a tensor, and the
core size of Tucker decomposition. O.O.T.: Out Of Time (takes more than 12 hours). DBTF-TK decomposes up to 83–163×
larger tensors than existing methods in 86–129× less time (Figure 8(a)). Overall, DBTF-TK achieves 7–234× speed-up, and
exhibits near-linear scalability with regard to all data aspects.

0.01. V is set to 15 in all experiments. As shown in Fig-
ure 8(c), DBTF-TK scales up to the largest core size, while
BTucker ALS fails to scale up to core size greater than 20.
Note that Walk’n’Merge is not shown in the figure since it
does not allow users to specify the core size; instead, it au-
tomatically determines the core size according to the MDL
principle. In terms of running time, DBTF-TK is faster than
BTucker ALS for all core sizes, with DBTF-TK being 7×
faster than BTucker ALS when core size R1=R2=R3 is 20.

While DBTF-TK outperforms all baselines, the largest
core size R1=R2=R3 = 40 for Tucker factorization is much
smaller than the largest rank size R = 240 used for CP factor-
ization. This is because Tucker factorization is much more
expensive than CP factorization as it involves all steps of CP
factorization, and also performs steps to update a core tensor,
which is the most costly operation that takes time propor-
tional to the cube of core size R1=R2=R3 (see Lemma 8).
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Fig. 9: The scalability of DBTF-CP and other methods on
the real-world datasets. Notice that only DBTF-CP scales
up to all datasets, while Walk’n’Merge processes only Face-
book, and BCP ALS fails to process all datasets. DBTF-CP
runs 17× faster than Walk’n’Merge on Facebook. An empty
bar denotes that the corresponding method runs out of time
(> 12 hours) or memory while decomposing the dataset.
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5.2.3 Boolean CP Factorization on Real-World Data

Figure 9 shows the the running time of DBTF-CP, Walk’n’Merge,
and BCP ALS on real-world datasets. We set the maximum
running time to 12 hours, and R to 10 for DBTF-CP and
BCP ALS. Among three methods, DBTF-CP is the only one
that scales up for all datasets. Walk’n’Merge decomposes
only Facebook, and runs out of time for all other datasets;
BCP ALS fails to handle real-world tensors as it causes out-
of-memory errors for all datasets, except for DBLP for which
BCP ALS runs out of time. Also, DBTF-CP runs 17× faster
than Walk’n’Merge on Facebook.
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Fig. 10: The scalability of DBTF-TK and other methods on
the real-world datasets. Notice that only DBTF-TK scales up
to all datasets, while Walk’n’Merge and BTucker ALS fail
to process all datasets as they run out of time (> 12 hours)
or memory while decomposing the dataset.

5.2.4 Boolean Tucker Factorization on Real-World Data

Figure 10 reports the running time of DBTF-TK, Walk’n’Merge,
and BTucker ALS on real-world tensors. We run each experi-
ment for at most 12 hours with R1=R2=R3 = 4. In Figure 10,
only DBTF-TK is shown as it is the only method that scales
up to all datasets. While Walk’n’Merge finds blocks within
the time limit for Facebook data, it runs out of time while
merging factors and adjusting the core tensor. BTucker ALS
runs out of time for DBLP, and causes out-of-memory errors
for all other datasets.

5.3 Machine Scalability

We measure the machine scalability of DBTF-CP and DBTF-
TK by increasing the number of machines from 4 to 16,
and report T4/TM where TM is the running time using M
machines.

Boolean CP Factorization. We use the synthetic tensor
of size I=J=K=212 and of density 0.01; we set the rank R to
10. Figure 11(a) shows that DBTF-CP scales up near linearly.
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Fig. 11: The scalability of DBTF-CP and DBTF-TK with
respect to the number of machines. TM means the running
time using M machines. Notice that the running time scales
up near linearly.

Overall, DBTF-CP achieves 2.69× speed-up, as the number
of machines increases fourfold.

Boolean Tucker Factorization. We use the synthetic
tensor of size I=J=K=211 and of density 0.01; we set the
core size R1=R2=R3 to 4. As Figure 11(b) shows, DBTF-
TK shows near linear scalability, achieving 1.87× speed-up
when the number of machines is increased from 4 to 16.

5.4 Reconstruction Error

We evaluate the accuracy of DBTF in terms of reconstruc-
tion error, which is defined as |X−X′| where X is an in-
put tensor and X′ is a reconstructed tensor. Tensors of size
I=J=K=100 are used in experiments. We run each configu-
ration three times, and report the average of the results. We
compare DBTF with Walk’n’Merge as they take different
approaches for Boolean CP and Tucker decompositions, and
exclude BCP ALS and BTucker ALS as DBTF, BCP ALS
and BTucker ALS are based on the same Boolean decompo-
sition frameworks.

5.4.1 Boolean CP Factorization

We measure reconstruction errors, varying one of the four
different data aspects—factor matrix density (0.1), rank (10),
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Fig. 12: The reconstruction error of DBTF-CP and other methods with respect to factor matrix density, rank, additive noise
level, and destructive noise level. Walk’n’Merge* in (d) refers to the version of Walk’n’Merge which executes the merging
phase. Notice that the reconstruction errors of DBTF-CP are smaller than those of Walk’n’Merge for all aspects.
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Fig. 13: The reconstruction error of DBTF-TK and other methods with respect to factor matrix density, core size, additive
noise level, and destructive noise level. Across all aspects, the reconstruction errors of DBTF-TK are smaller than or close to
those of Walk’n’Merge. Note that, in contrast to DBTF-TK, Walk’n’Merge shows performance fluctuations in a few cases.

additive noise level (0.1), and destructive noise level (0.1)—
while fixing the others to the default values. The values in
the parentheses are the default settings for each aspect. For
Walk’n’Merge, we report the reconstruction error computed
from the blocks obtained before the second part of the merg-
ing phase [2], since the subsequent merging procedure sig-
nificantly increased the reconstruction error when applied
to our synthetic tensors. Figure 12(d) shows the difference
between the version of Walk’n’Merge with the second part
of merging procedure (Walk’n’Merge*) and the one without
it (Walk’n’Merge).

Factor Matrix Density. We increase the density of fac-
tor matrices from 0.1 to 0.3. As shown in Figure 12(a), the
reconstruction error of DBTF-CP is smaller than that of
Walk’n’Merge for all densities. In particular, as the density
increases, the gap between DBTF-CP and Walk’n’Merge
widens.

Rank. We increase the rank of a tensor from 10 to 60. As
shown in Figure 12(b), the reconstruction errors of both meth-
ods increase in proportion to the rank. This is an expected
result since, given a fixed density, the increase in the rank
of factor matrices leads to increased number of non-zeros
in the input tensor. Notice that the reconstruction error of
DBTF-CP is smaller than that of Walk’n’Merge for all ranks.

Additive Noise Level. We increase the additive noise
level from 0.1 to 0.4. As Figure 12(c) shows, the recon-
struction errors of both methods increase in proportion to the
additive noise level. While the relative accuracy improvement
obtained with DBTF-CP tends to decrease as the noise level

increases, the reconstruction error of DBTF-CP is smaller
than that of Walk’n’Merge for all additive noise levels.

Destructive Noise Level. We increase the destructive
noise level from 0.1 to 0.4. Figure 12(d) shows that DBTF-
CP produces more accurate results than Walk’n’Merge across
all destructive noise levels. As the destructive noise level
increases, the reconstruction error of DBTF-CP slightly in-
creases, while that of Walk’n’Merge decreases; as a result,
the gap between two methods becomes smaller. Destructive
noise makes the factorization harder by sparsifying tensors
and introducing noises at the same time.

5.4.2 Boolean Tucker Factorization

We measure reconstruction errors, varying one of the fol-
lowing data aspects—factor matrix density (0.1), core size
(R1=R2=R3=8), additive noise level (0.2), and destructive
noise level (0.2)—while fixing the others to their default val-
ues. The values in the parentheses are the default settings for
each aspect.

Factor Matrix Density. We increase the density of factor
matrices from 0.05 to 0.15. As shown in Figure 13(a), the
reconstruction error of DBTF-TK is smaller than or close
to that of Walk’n’Merge across all densities. Note that, in
contrast to DBTF-TK, Walk’n’Merge shows performance
fluctuation when the density is 0.075.

Rank. We increase the core size R1 = R2 = R3 from 4
to 24. As shown in Figure 13(b), the reconstruction errors
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of both methods increase in proportion to the core size, and
DBTF-TK and Walk’n’Merge exhibit similar performance.

Additive Noise Level. We increase the additive noise
level from 0.1 to 0.4. Figure 13(c) shows that both methods
perform similarly as the noise level increases, except when
the additive noise level is 0.1, in which case the reconstruc-
tion error of Walk’n’Merge is approximately 10× greater
than that of DBTF-TK.

Destructive Noise Level. We increase the destructive
noise level from 0.1 to 0.4. Figure 13(d) shows that the recon-
struction errors of both methods decrease as the noise level is
increased, and DBTF-TK is consistently more accurate than
Walk’n’Merge for all destructive noise levels.

6 Conclusion

In this paper, we propose DBTF, a distributed method for
Boolean CP (DBTF-CP) and Tucker (DBTF-TK) factoriza-
tions running on the Apache Spark framework. By distributed
data generation with minimal network transfer, exploiting the
characteristics of Boolean operations, and with careful parti-
tioning, DBTF successfully tackles the high computational
costs and minimizes the intermediate data. Experimental
results show that DBTF-CP decomposes up to 163–323×
larger tensors than existing methods in 82–180× less time,
and DBTF-TK decomposes up to 83–163× larger tensors
than existing methods in 86–129× less time. Furthermore,
both DBTF-CP and DBTF-TK exhibit near-linear scalabil-
ity in terms of tensor dimensionality, density, rank, and the
number of machines.
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2. D. Erdős and P. Miettinen, “Walk ’n’ merge: A scalable algorithm
for boolean tensor factorization,” in ICDM, 2013, pp. 1037–1042.

3. P. Miettinen, “Boolean tensor factorizations,” in ICDM, 2011.
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A Proofs

A.1 Proof of Lemma 4

Proof Algorithm 3 is composed of three operations: (1) partitioning
(lines 1–3), (2) initialization (line 6), and (3) updating factor matrices
(lines 7 and 10).

(1) After unfolding an input tensor X into X, DBTF-CP splits X into
N partitions, and further divides each partition into a set of blocks
(Algorithm 4). Unfolding takes O(|X|) time as each entry can be
mapped in constant time (Equation (1)), and partitioning takes
O(|X|) time since determining which partition and block an entry
of X belongs to is also a constant-time operation. It takes O(|X|)
time in total.

(2) Random initialization of factor matrices takes O(IR) time.
(3) The update of a factor matrix (Algorithm 5) consists of the follow-

ing steps (i, ii, iii, and iv):

i. Caching row summations of a factor matrix (line 1). By Lemma 2,
the number of cache tables is dR/Ve, and the maximum size of
a single cache table is 2dR/dR/Vee. Each row summation can be
obtained in O(I) time via incremental computations that use prior
row summation results. Hence, caching row summations for N
partitions takes O(N

⌈ R
V

⌉
2dR/dR/VeeI).

ii. Fetching cached row summations (lines 7–8). The number of con-
structing row summations and computing errors to update a factor
matrix is 2IR. An entire row summation is constructed by fetching
row summations from the cache tables O(max(I,N)) times across
N partitions. If R≤V , a row summation can be constructed by a

single access to the cache. If R>V , multiple accesses are required
to fetch row summations from

⌈ R
V

⌉
tables. Also, constructing a

cache key requires O(min(V,R)) time. Thus, fetching a cached row
summation takes O(

⌈ R
V

⌉
min(V,R) max(I,N)) time. When R>V ,

there is an additional cost to sum up
⌈ R

V

⌉
row summations, which is

O((
⌈ R

V

⌉
−1)I2). In total, the time complexity for this step is O(IR[⌈ R

V

⌉
min(V,R)max(I,N)+(

⌈ R
V

⌉
−1)I2

]
). Simplifying terms, we

get O(I3R
⌈ R

V

⌉
).

iii. Computing the error for the fetched row summation (line 9). It takes
O(I2) time to calculate an error of one row summation with regard
to the corresponding row of the unfolded tensor. For each column
entry, DBTF-CP constructs row summations (ar: � (M f �Ms)

> in
Algorithm 5) twice (for arc =0 and 1). Therefore, given a rank R,
this step takes O(I3R) time.

iv. Updating a factor matrix (lines 10–14). Updating an entry in a factor
matrix requires summing up errors for each value collected from
N partitions, which takes O(N) time. Updating all entries takes
O(NIR) time. In case the percentage of zeros in the column being
updated is greater than Z, an additional step is performed to make
the sparsity of the column less than Z, which takes O(I log(I)) time
as all 2I values may need to be fetched in the order of increasing er-
ror in the worst case. Since we have R columns, this additional step
takes O(RI log(I)) in total. Thus, step iv takes O(NIR+RI log(I))
time.

After simplifying terms, DBTF-CP’s time complexity is O
(
T I3R

⌈ R
V

⌉
+

T N
⌈ R

V

⌉
2dR/dR/VeeI

)
. At each iteration, the dominating term is O(I3R)

that comes from fetching row summation and calculating its error
(steps ii and iii), which is an O(I2) operation that is performed 2IR
times. Note that the worst-case time complexity for this error calcu-
lation is O(I2) even when the input tensor is sparse because the time
for this operation depends not only on the non-zeros in the row of an
input tensor, but also on the non-zeros in the corresponding row of the
intermediate matrix product (e.g., (C�B)>), which could be full of
non-zeros in the worst case. However, given sparse tensors in practice,
factor matrices are updated to be sparse such that the reconstructed ten-
sor gets closer to the sparse input tensor, which makes the time required
for the dominating operation much less than O(I2).

A.2 Proof of Lemma 5

Proof For the decomposition of an input tensor X ∈ BI×I×I , DBTF-CP
stores the following four types of data in memory at each iteration:
(1) partitioned unfolded input tensors pX(1), pX(2), and pX(3), (2) row
summation results, (3) factor matrices A,B, and C, and (4) errors for
the entries of a column being updated.

(1) While partitioning of an unfolded tensor by DBTF-CP structures it
differently from the original one, the total number of elements does
not change after partitioning. Thus, pX(1), pX(2), and pX(3) require
O(|X|) memory.

(2) By Lemma 2, the total number of row summations of a factor matrix
is O(

⌈ R
V

⌉
2dR/dR/Vee). By Lemma 3, each partition has at most three

types of blocks. Since an entry in the cache table uses O(I) space,
the total amount of memory used for row summation results is
O(NI

⌈ R
V

⌉
2dR/dR/Vee). Note that since Boolean factor matrices are

normally sparse, many cached row summations are not normally
dense. Therefore, the actual amount of memory used is usually
smaller than the stated upper bound.

(3) Since A,B, and C are broadcast to each machine, they require
O(MRI) memory in total.

(4) Each partition stores two errors for the entries of the column being
updated, which takes O(NI) memory.

http://hadoop.apache.org/
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A.3 Proof of Lemma 6

Proof DBTF-CP unfolds an input tensor X into three different modes,
X(1), X(2), and X(3), and then partitions each one: unfolded tensors are
shuffled across machines so that each machine has a specific range of
consecutive columns of unfolded tensors. In the process, the entire data
can be shuffled, depending on the initial distribution of the data. Thus,
the amount of data shuffled for partitioning X is O(|X|).

A.4 Proof of Lemma 7

Proof Once the three unfolded input tensors X(1), X(2), and X(3) are
partitioned, they are cached across machines, and are not shuffled. In
each iteration, DBTF-CP broadcasts three factor matrices A, B, and C to
each machine, which takes O(MRI) space in sum. With only these three
matrices, each machine generates the part of row summation it needs
to process. Also, in updating a factor matrix of size I-by-R, DBTF-CP
collects from all partitions the errors for both cases of when each entry
of the factor matrix is set to 0 and 1. This process involves transmitting
2IR errors from each partition to the driver node, which takes O(NIR)
space in total. Accordingly, the total amount of data shuffled for T
iterations after partitioning X is O(T RI(M+N)).

A.5 Proof of Lemma 8

Proof Algorithm 8 is composed of four operations: (1) partitioning
(lines 1–4), (2) initialization (lines 7–8), (3) updating factor matrices
(lines 10 and 14), and (4) updating a core tensor (lines 9 and 13).

(1) Partitioning of an input tensor X into pX(1), pX(2), and pX(3) (lines
1–3) takes O(|X|) time as in DBTF-CP. Similarly, partitioning of
X into pX (line 4) takes O(|X|) time since determining which
partition an entry of X belongs to can be done in constant time.

(2) Randomly initializing factor matrices and a core tensor takes O(IR)
and O(R3) time, respectively.

(3) The update of a factor matrix (Algorithm 10) consists of the follow-
ing steps (i, ii, iii, and iv):

i. Caching row summations (lines 1–2). Caching row summations of
a factor matrix takes O(N

⌈ R
V

⌉
2dR/dR/VeeI) as in DBTF-CP. Caching

row summations of an unfolded core tensor requires O(
⌈ R

V

⌉
2dR/dR/VeeR2)

as a single row summation can be computed in O(R2) time. Assum-
ing R2 ≤ I, this step requires O(N

⌈ R
V

⌉
2dR/dR/VeeI) time.

ii. Fetching cached row summations (lines 9–10). (a) Row summa-
tions of an unfolded core tensor are fetched O(IR) times in each
partition. If R≤V , a row summation can be obtained with one
access to the cache. If R>V , multiple accesses are required to
fetch row summations from

⌈ R
V

⌉
tables, and there is an additional

cost to sum up
⌈ R

V

⌉
row summations. In sum, this operation takes

O(NIR
[⌈ R

V

⌉
+(
⌈ R

V

⌉
−1)R2

]
) time. (b) Fetching a cached row sum-

mation of a factor matrix is identical to that in DBTF-CP, except
for the computation of cache key, which takes O(R2) time. There-
fore, this operation takes O(IR

[⌈ R
V

⌉
R2 max(I,N)+(

⌈ R
V

⌉
−1)I2

]
)

in total. Simplifying (a) and (b) under the assumption that R2 ≤ I
and max(I,N) = I, the time complexity for this step reduces to
O(I3R

⌈ R
V

⌉
).

iii. Computing the error for the fetched row summation (line 11). This
step takes the same time as in DBTF-CP, which is O(I3R).

iv. Updating a factor matrix (lines 12–16). This step takes the same
time as in DBTF-CP, which is O(NIR+RI log(I)).

(4) For the update of a core tensor (Algorithm 11), two operations are
repeatedly performed for each core tensor entry. First, rowwise
sum of entries in factor matrices are computed (line 3), which takes
O(IR) time. Second, DBTF-TK determines whether flipping the

core tensor entry would improve accuracy (lines 4–25). This step
takes O(I3) time in the worst case when the factor matrices are full
of non-zeros. In sum, it takes O(I3R3) to update a core tensor.

In sum, DBTF-TK takes O
(
T I3R3 +T N

⌈ R
V

⌉
2dR/dR/VeeI

)
time.

A.6 Proof of Lemma 9

Proof In order to decompose an input tensor X ∈ BI×I×I , DBTF-TK
stores the following five types of data in memory at each iteration: (1)
partitioned input tensors pX(1), pX(2), pX(3), and pX, (2) row summa-
tion results, (3) a core tensor G, (4) factor matrices A,B, and C, and (5)
errors for the entries of a column being updated.
(1) Since partitioning does not change the total number of elements,

pX(1), pX(2), pX(3), and pX require O(|X|) memory.
(2) Two types of row summation results are maintained in DBTF-

TK: the first for the factor matrix (e.g., B>), and the second for
the unfolded core tensors (e.g., G(1)). Note that, given R num-
ber of rows, the total number of row summations to be cached
is O(

⌈ R
V

⌉
2dR/dR/Vee) by Lemma 2. First, the cache tables for the

factor matrix are the same as those used in DBTF-CP; thus they
use O(NI

⌈ R
V

⌉
2dR/dR/Vee) memory. Second, across M machines, the

cache tables for the unfolded core tensor require O(MR2
⌈ R

V

⌉
2dR/dR/Vee)

as a single entry uses O(R2) space. Assuming R2 ≤ I, O((N +
M)I

⌈ R
V

⌉
2dR/dR/Vee) memory is required in total for row summation

results.
(3) Since the core tensor G is broadcast to each machine, O(MR3) is

required.
(4) Factor matrices require O(MRI) memory as in DBTF-CP.
(5) O(NI) memory is required since each partition stores two errors

for each entry of the column being updated as in DBTF-CP.

A.7 Proof of Lemma 10

Proof In DBTF-TK, an input tensor X is partitioned in four different
ways, where the first three are pX(1), pX(2), and pX(3) that are used for
updating factor matrices, and the last one is pX that is used for updating
a core tensor. Each machine is assigned non-overlapping partitions of the
input tensor. The entire data can be shuffled in the worst cast, depending
on the data distribution. Thus, the total amount of data shuffled for
partitioning X is O(|X|).

A.8 Proof of Lemma 11

Proof As in DBTF-CP, partitioned input tensors pX(1), pX(2), pX(3),
and pX are shuffled only once in the beginning. After that, DBTF-TK
performs data shuffling at each iteration in order to update (1) factor
matrices A, B, and C, and (2) a core tensor G.
(1) In updating factor matrices, DBTF-TK uses all data used in DBTF-

CP, which is O(T RI(M +N)). Also, DBTF-TK broadcasts the
tables containing the combinations of row summations of three
unfolded core tensors (G(1),G(2), and G(3)) to each machine at
every iteration. Since, given R, the total number of row summations
to be cached is O(

⌈ R
V

⌉
2dR/dR/Vee), and each row summation uses

O(R2) space, broadcasting these tables overall requires O(T MR2⌈ R
V

⌉
2dR/dR/Vee).

(2) DBTF-TK broadcasts G to each machine every time an element
of a core tensor G is updated, which takes O(MR6) space in each
iteration. Also, in updating an element of G, DBTF-TK aggregates
partial gains computed from each partition, which requires O(NR3)
for each iteration.

Accordingly, the total amount of data shuffled for T iterations after parti-
tioning X is O(T RI(M+N)+T R3(MR3 +N)+T MR2

⌈ R
V

⌉
2dR/dR/Vee).
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