
Stabilizing Recommendations by Rank-Preserving Fine-Tuning
Sejoon Oh

soh337@gatech.edu
Georgia Institute of Technology

United States

Berk Ustun
berk@ucsd.edu

University of California San Diego
United States

Julian McAuley
jmcauley@eng.ucsd.edu

University of California San Diego
United States

Srijan Kumar
srijan@gatech.edu

Georgia Institute of Technology
United States

ABSTRACT

Modern recommender systems may generate significantly different
recommendations due to small perturbations in the training data.
Changes in the data from one user can alter the recommendations
for other unrelated users. We propose a method to stabilize recom-
mender systems against such perturbations. This is a challenging
task due to (1) the unavailability of “ideal” ranked recommendation
lists; (2) the scalability of optimizing the stability of rank lists con-
taining all items and for all training instances; and (3) the possibility
of various noisy perturbations. Our method, FINEST, overcomes
these challenges by first obtaining reference rank lists from a given
recommendation model and then fine-tuning the model under sim-
ulated perturbation scenarios with rank-preserving regularization
on sampled items. Our experiments on three real-world datasets
demonstrate that FINEST can ensure that recommender models
produce stable recommendations under a wide range of different
perturbations while preserving next-item prediction accuracy.

1 INTRODUCTION

Sequential recommender systems [9, 16, 24, 30, 45] use historical
user-item interactions as training data and produce ranked recom-
mendation lists for users using the trained model and observed
interactions. While existing recommenders have primarily focused
on improving accuracy, there has been a surge of interest in ad-
dressing address criteria such as fairness [12, 53], diversity [7, 42],
and robustness [10, 36, 44, 55, 64].

Recent work [36] has shown that sequential recommenders are
unstable when faced with perturbations in the training data. Pertur-
bations refer to changes in the data, such as the insertion, deletion,
or replacement of user-item interactions. These perturbations can
occur due to arbitrary noise in user activity (e.g., when a user clicks
on an item multiple times) or as a result of the presence of adver-
saries [6, 8, 10, 33, 36, 44, 50, 55, 64, 65].

The stability of a model is defined as its ability to generate con-
sistent recommendation lists even in the presence of noisy pertur-
bations in the input data. To illustrate this, consider Fig. 1, which
showcases two datasets: the original dataset with no perturbations
(top left) and the dataset with random minor perturbations (bottom
left). If a typical recommender model is trained using these two
datasets, it will generate drastically different rank lists for each user
(top right and middle right rows), despite the minor differences

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore
2023. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Figure 1: Existing sequential recommendation models can generate

drastically different rank lists filled with irrelevant items given

interaction-level training data perturbations (mid), compared to

reference rank lists (top). The recommendations can be stabilized

with our proposed fine-tuning method FINEST (bottom).

in the datasets. Our goal is to devise a stable recommender model
(bottom right row) that generates rank lists similar to the original
rank lists, despite the presence of perturbations.

This instability of recommender systems can be detrimental to
diverse online platforms, including high-stakes applications such
as healthcare, education, and housing [47, 51, 62, 66]. For instance,
minor noisy perturbations in the training data for one user can lead
to drastic changes in recommendations for all users [36]. These
changes include the top-𝐾 recommendations to users being filled
with irrelevant items, which can damage the reliability of recom-
mender systems and consequently lower user engagement and
satisfaction on the platforms [23, 39]. Moreover, some user groups’
recommendations can be altered more than other groups [36]. In
extreme cases, an adversary can even intentionally lower the model
stability bymanipulating the training data, which can amplify users’
mistrust and dissatisfaction with platforms.

Despite the importance of recommendation stability, there is lim-
ited research on training mechanisms that enhance the stability of
recommender systems. Existing methods [18, 48, 59] for enhancing
model robustness typically aim to preserve the overall accuracy
metric against input perturbations. In other words, they stabilize
the rank of one specific item (typically, the ground-truth next item)
in a rank list rather than all the items in the list [3, 56]. Therefore,

https://doi.org/10.1145/1122445.1122456

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore Sejoon Oh, Berk Ustun, Julian McAuley, & Srijan Kumar

it is crucial to develop a technique for stabilizing recommenders
(including those in deployment) against perturbations.

We propose adopting a learning-based method to stabilize rank
lists in sequential recommender systems. However, there are four
challenges to overcome. First, to generate consistent rank lists with
and without perturbations, the model requires “reference” rank
lists that can be used to generate stable rank lists. However, in the
datasets, only ground-truth next items are present, but the desired
rank lists are not. Second, there is a lack of objective functions
that can optimize pairwise rank list similarity based on item order.
Third, each rank list includes all the items, and each interaction
generates a new rank list. Optimizing over all of these rank lists
is computationally prohibitive. Finally, the interaction-level per-
turbations can vary, possibly introducing noise through injection,
deletion, or replacement [36, 44, 64]. Since the specific type of noise
is unknown before testing, it is desirable to develop an algorithm
that remains agnostic to the noise during testing.

We present a fine-tuning method for sequential recommender
systems that maximizes model stability while preserving predic-
tion performance, named FINEST (FINE-tuning for STable Rec-
ommendations). FINEST stabilizes a pre-trained recommendation
model, ΘBase . Using ΘBase , FINEST first obtains recommendation
lists (referred to as “reference” rank lists) for all training instances
(addressing challenge 1). Then, FINEST fine-tunes ΘBase’s parame-
ters to enhance stability in two steps during every epoch. Firstly,
FINEST simulates a perturbation scenario by randomly sampling
and perturbing a small number of interactions (e.g., 0.1%) in each
epoch. This generates perturbed training data to be used in that
epoch. Secondly, FINEST designs a novel regularization function to
encourage the rank lists generated by the model (being fine-tuned
with the perturbed data) to be the same as the reference rank lists.
This regularization function is used along with the next-item pre-
diction objective (addressing challenge 2). Since conserving the
ranks of all items is computationally prohibitive, optimization is
only performed on the top-𝐾 items (addressing challenge 3). This
fine-tuned model is used during test time as-is, regardless of various
perturbations during testing (addressing challenge 4).

FINEST is model-agnostic, meaning that it can stabilize the rec-
ommendations for any existing sequential recommender system
against perturbations. FINEST is a fine-tuning method enabling it
to be applied to any pre-trained and even deployed recommender
systems without requiring training from scratch.

Experiments are conducted on three recommendermodels against
input perturbations on three datasets. To measure the stability,
we employ two ranklist stability metrics, as defined in existing
works [36]: Rank-biased Overlap (RBO) [54] and Top-𝐾 Jaccard
Similarity [36]. These metrics capture the differences between the
rank lists with and without perturbations. With FINEST, recom-
mender models demonstrate significantly increased stability, for
example, at least 11% and 7% improvement in RBO, and 43% and 19%
improvement in Jaccard score compared to the original model and
baselines, respectively, while preserving model prediction accuracy.
FINEST also empirically preserves recommendation performance due
to joint training of the next-item prediction objective and the rank-
preserving objective.

Table 1: Overview of existing algorithms to build robust recom-

mender systems.

F
I
N
E
S
T

A
PT

[5
6]

A
M
R
[4
8]

A
PR

[1
8]

A
dv

IR
[3
8]

A
CA

E
[5
9]

Enhance Model Robustness ✓ ✓ ✓ ✓ ✓ ✓
Fine-tuning Applicability ✓ ✓ ✓ ✓ ✓
Sequential Recommendation ✓ ✓
Simulate Perturbations in Training ✓ ✓ ✓
Preserve All Users’ Rank Lists ✓

2 RELATEDWORK

Robust Recommender Systems. The majority of existing train-
ing or fine-tuning methods [2–4, 11, 18, 38, 48, 56, 59] for robust
recommender systems are designed to provide accurate next-item
predictions in the presence of input perturbations. However, as
shown in Table 1, most of these methods [18, 38, 48, 56, 59] have
limitations in enhancing the ranking stability of sequential recom-
menders against input perturbations, as they are not optimized to
preserve entire rank lists (but rather focus on ground-truth next-
items) [18, 56, 59] or cannot be applied to sequential settings [38]
(which can predict users’ interests based on sequences of their re-
cent interactions). A few of them [3, 48] also require additional
input like images. While a few ranking-distillation methods [49, 63]
can be adapted to our setting, they are unsuitable for preserving
rank lists against input perturbations, as they may sacrifice the
next-item prediction accuracy to achieve their goal.
Adversarial Machine Learning. Adversarial training has been
widely used in computer vision and natural language processing
(NLP) [14, 34, 35] areas to enhance the robustness of deep learning
models. Many adversarial training methods use min-max optimiza-
tion, which minimizes the maximal adversarial loss (i.e., worst-case
scenario) computed with adversarial examples [52]. In computer
vision, adversarial examples are generated by the Fast Gradient
Sign Method [14], Projected Gradient Descent [5], or GANs [43],
which can change the classification results. In the NLP area, ad-
versarial examples are created in various ways, such as replacing
characters or words in the input text and applying noise to input to-
ken embeddings [34, 35]. However, these models cannot be directly
applied to recommender systems as they do not work on sequential
interaction data or do not generate rank lists of items.

3 PRELIMINARIES

Sequential Recommendations.We focus on sequential recom-
mender models in this work, which are trained to accurately predict
the next item of a user based on their previous interactions. For-
mally, we have a set of users U and items I. For a user 𝑢, their
interactions are represented as a sequence of items (sorted by times-
tamps) denoted as 𝑆𝑢 = {𝑆𝑢1 , . . . 𝑆

𝑢
𝑚𝑢 }, and the corresponding times-

tamps as 𝑇𝑢 = {𝑇𝑢1 , . . .𝑇
𝑢
𝑚𝑢 }. Here, 𝑆𝑢𝑡 ∈ I, and 𝑚𝑢 represents

the total number of interactions for a user 𝑢. We train the sequen-
tial recommender with the following loss function to predict the
next item 𝑆𝑢

𝑡+1 accurately for each user 𝑢, given an item sequence

Stabilizing Recommendations by Rank-Preserving Fine-Tuning RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore

{𝑆𝑢1 , . . . , 𝑆
𝑢
𝑡 },∀𝑡 ∈ [1,𝑚𝑢 − 1].

L =
∑︁
𝑢∈U

𝑚𝑢−1∑︁
𝑡=1

𝐶𝐸 (1𝑆
𝑢
𝑡+1 ,Θ({𝑆𝑢1 , . . . , 𝑆

𝑢
𝑡 })). (1)

Note that 1𝑖 ∈ R | I | is a one-hot vector where the 𝑖𝑡ℎ value is 1,𝐶𝐸
represents the Cross-Entropy function, andΘ({𝑆𝑢1 , . . . , 𝑆

𝑢
𝑡 }) ∈ R | I |

is the next-item prediction vector generated by the model for a
user 𝑢, given their historical item sequence {𝑆𝑢1 , . . . , 𝑆

𝑢
𝑡 }. Given the

sequential data, we define an instance (𝑋𝑛) as a pair consisting of
an observed item sequence and the ground-truth next-item, i.e.,
({𝑆𝑢1 , . . . , 𝑆

𝑢
𝑡 }, 𝑆𝑢𝑡+1).

Measuring Model Stability. Recent work [36] has shown that
existing sequential recommenders generate unstable predictions
when subjected to input data perturbations. Specifically, consider
two scenarios. First, a recommender model Θ is trained on the orig-
inal training data and generates recommendation lists 𝑅𝑋𝑛

Θ for all
test instances 𝑋𝑛 in the test data 𝑋test . Second, another model Θ′,
which shares the same initial parameters as Θ, is trained on per-
turbed training data and produces rank lists 𝑅𝑋𝑛

Θ′ for all 𝑋𝑛 ∈ 𝑋test .
If the original model Θ is robust against input perturbation, then
𝑅
𝑋𝑛

Θ and 𝑅𝑋𝑛

Θ′ should be highly similar for all 𝑋𝑛 ∈ 𝑋test . However,
existing work [36] has shown that even if there are minor changes
to the training data, then 𝑅𝑋𝑛

Θ′ is drastically different from 𝑅
𝑋𝑛

Θ for
all𝑋𝑛 ∈ 𝑋test . To quantify the stability of the model Θ against input
perturbations, we use the Rank List Stability (RLS) [36] metric:

𝑅𝐿𝑆 =
1
|𝑋test |

∑︁
∀𝑋𝑛∈𝑋test

similarity(𝑅𝑋𝑛

Θ , 𝑅
𝑋𝑛

Θ′), (2)

where similarity(𝐴, 𝐵) denotes a similarity function between two
rank lists 𝐴 and 𝐵. Following [36], we use Rank-biased Overlap
(RBO) [54] and Top-𝐾 Jaccard Similarity [21] as similarity functions.
(1)Rank-biased Overlap (RBO): RBO [54] measures the similarity
of orderings between two rank lists. A higher RBO indicates two
rank lists are similar, and RBO values lie between 0 and 1. RBO
gives higher importance to the similarity in the top part of the
rank lists than the bottom part, making it our primary metric and
preferable compared to other metrics like Kendall’s Tau [25]. RBO
of two rank lists 𝐴 and 𝐵 with |I | items is defined as follows.

RBO(𝐴, 𝐵) = (1 − 𝑝)
| I |∑︁
𝑑=1

𝑝𝑑−1
|𝐴[1 : 𝑑] ∩ 𝐵 [1 : 𝑑] |

𝑑
,

where 𝑝 is a hyperparameter (recommended value: 0.9).
(2) Top-𝐾 Jaccard similarity: Jaccard similarity (Jaccard (𝐴, 𝐵) =
|𝐴∩𝐵 |
|𝐴∪𝐵 |) is used to calculate the ratio of common top-𝐾 items between
two rank lists, without considering the item ordering. The score
ranges from 0 to 1, and a higher score indicates the top-𝐾 items
in two rank lists are similar (indicating higher model stability).
Regarding 𝐾 , we use 𝐾 = 10 as it is common practice [16, 27].

Scope: Interaction-level Perturbations. Similar to priorwork [36],
we assume interaction-level minor perturbations. Interaction
perturbations are the smallest perturbation compared to user or
item perturbations. Minor perturbations indicate that only a small
number of interactions (e.g., 0.1%) can be perturbed in the train-
ing data. Naturally, larger perturbations will result in a greater

decrease in stability. Possible perturbations include injecting inter-
actions, deleting interactions, replacing items of interactions with
other items, or a mix of them. To find such interactions to perturb,
we can employ various perturbation algorithms for recommender
systems [36, 40, 50, 55, 63, 65].

4 PROBLEM SETUP

Goal. Let Θ and Θ′ be recommendation models trained with the
original and perturbed training data, respectively. Also, let 𝑅𝑋𝑛

Θ and
𝑅
𝑋𝑛

Θ′ be the rank lists generated for a test instance 𝑋𝑛 without and
with perturbations, respectively. Then, our goal is to fine-tune Θ′

with our proposed method FINEST, so that 𝑅𝑋𝑛

Θ′ would be identical
to 𝑅𝑋𝑛

Θ for all 𝑋𝑛 ∈ 𝑋test . Let 𝐴[𝑖] represent the 𝑖𝑡ℎ item in a rank
list𝐴, and |I | be the number of items. Then, formally, our objective
is to ensure that: 𝑅𝑋𝑛

Θ′ [𝑖] = 𝑅
𝑋𝑛

Θ [𝑖],∀𝑖 from 1 to |I | for all𝑋𝑛 ∈ 𝑋test
after fine-tuning with FINEST.

Assumptions. (1) The specific training interactions that are
perturbed are not known during the fine-tuning. Thus, a fine-tuning
model needs to be created that is robust regardless of the various
interaction perturbations. (2) As model designers aiming to increase
the model stability, we naturally have access to all the training data
and the recommendation model (e.g., model parameters).

Measuring Training Effectiveness against Perturbations.

We first measure the stability of a base recommender model ΘBase ,
which is trained with the typical next-item prediction objective. The
stability ofΘBase is quantified by the RLSmetrics using Equation (2),
where high RLS values indicate the model is stable. Next, we fine-
tuneΘBase with FINEST (we call this fine-tuned modelΘFINEST) and
compute its stability using the RLS metrics. FINEST is successful if
the stability of ΘFINEST is higher than ΘBase .

5 PROPOSED METHODOLOGY

We introduce a fine-tuning method called FINEST to enhance the
stability of sequential recommender systems against input pertur-
bations. FINEST simulates perturbation scenarios in the training
data and aims to maximize the model’s stability against such em-
ulated perturbations with a rank-aware regularization function.
Algorithm 1 and Fig. 2 summarize the main steps of FINEST. In
Step 1, the base recommender ΘBase is used to generate ranked
item lists for all training instances 𝑋𝑛 ∈ 𝑋train: 𝑅𝑋𝑛

ΘBase
. These lists

will serve as reference rank lists for fine-tuning the model. Next, the
base recommender ΘBase is fine-tuned with FINEST for 𝑇 epochs
(steps 2–5), with 𝑇 being a hyperparameter.

5.1 Step 2: Perturbation Simulations

Applying random perturbations on training data has contributed
to enhancing model stability against input data perturbations in
computer vision [13, 29, 41] and NLP [46]. Taking inspiration from
this, FINEST simulates a pseudo-perturbation by randomly sam-
pling training interactions (with a sampling ratio 𝑅) and perturbing
them every epoch. Perturbations include one of three actions with
equal probability: the interaction can be deleted, the interaction’s
item can be replaced with another, or a new interaction can be
inserted before it. Re-sampling in every epoch ensures that the
recommender model sees many variations of the input data and is

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore Sejoon Oh, Berk Ustun, Julian McAuley, & Srijan Kumar

Figure 2: Overview of stabilizing a recommender model via fine-tuning with FINEST. First, we obtain reference recommendations for all

training instances from a given recommendation model. Next, randomly sampled and perturbed data (changing every epoch) is to fine-tune the

model. FINEST adds rank-preserving regularization to minimize differences between the reference and fine-tuned rank lists (generated under

pseudo-perturbations). By simulating perturbations, FINEST can generate stable rank lists even in the presence of actual input perturbations.

Algorithm 1: FINEST: FINE-tuning for model STability
Input :A base recommender ΘBase , training data 𝑋train, sampling

ratio 𝑅, number of sampled items 𝐾 , number of
fine-tuning epochs𝑇 , regularization constants 𝜆, 𝜆1, 𝜆2.

Output :A fine-tuned recommender ΘFINEST
⊲ Step 1. Generate Reference Rank Lists

1 Generate reference rank lists 𝑅𝑋𝑛
ΘBase

, ∀𝑋𝑛 ∈ 𝑋train using a given
recommendation model ΘBase

2 ΘFINEST ←− ΘBase

3 for Fine-tuning epoch ∈ [1, . . . ,𝑇] do
⊲ Step 2. Training data is pseudo-perturbed

4 Perform random sampling of interactions with the ratio 𝑅
5 Perturb interactions by deletion, replacement, or insertion with

equal probability; 𝑋pert ←− the set of perturbed interactions
⊲ Step 3. Perform Next-item Prediction

6 Calculate the loss L using Eq. (1) with perturbed training data
⊲ Step 4. Rank-preserving Regularization

7 Compute recommendation prediction scores of top-2𝐾 items
using ΘFINEST for all training instances in 𝑋𝑛 ∈ 𝑋train\𝑋pert

8 Compute the regularization loss LREG using Eq. (4)
⊲ Step 5. Fine-tune to Stabilize Rank Lists

9 Update the model parameters ΘFINEST using Eq. (5)

10 Return the fine-tuned recommendation model ΘFINEST

able to learn to make accurate and stable predictions regardless of
a specific perturbation.

An example of perturbing training data by insertion is shown
in Fig. 2. In an insertion perturbation of an interaction (𝑢, 𝑖, 𝑡), we
inject the least popular item into 𝑢’s sequence with a timestamp
right before 𝑡 (e.g., 𝑡 − 1). Similarly, in an item replacement pertur-
bation, the target item of the interaction is replaced with the least
popular item in the dataset. In both cases, the least popular item is
selected as it leads to the lowest RLS metrics of the recommender
model compared to other items [36].

5.2 Step 3: Next-item Prediction on Perturbed

Simulations

The perturbed data is used to fine-tune ΘBase . Specifically, the pa-
rameters ofΘBase are used to initializeΘFINEST. It is then fine-tuned
for 𝑇 epochs on the next-item prediction loss using the perturbed
data as input (see Eq. (1)). This loss will be added with the rank-
preserving regularization loss in the next step.

5.3 Step 4: Rank-preserving Regularization

The perturbed training data generated in Step 2 is used to fine-
tune the recommender model ΘFINEST. ΘFINEST will generate rank
lists 𝑅𝑋𝑛

ΘFINEST
for all training instances. However, due to the pseudo-

perturbations, the generated rank lists𝑅𝑋𝑛

ΘFINEST
can be different from

the reference rank lists 𝑅𝑋𝑛

ΘBase
for all 𝑋𝑛 ∈ 𝑋train. The goal of the

rank-preserving regularization is to ensure the two rank lists are
identical after fine-tuning, meaning the rank lists do not change
despite the perturbation.

Ideally, we need to preserve the ranking of all items in the ref-
erence rank lists to guarantee perfect model stability. However,
keeping the ranks of all items in all the rank lists is computationally
prohibitive (e.g., when there are millions of items in e-commerce).
Therefore, we only aim to preserve the rank of the top-𝐾 items
from each reference rank list. We focus on these top items because
they are more likely to be viewed by end users. Formally, for each
training instance 𝑋𝑛 ∈ 𝑋train, we perform top-2𝐾 sampling on the
reference rank list 𝑅𝑋𝑛

ΘBase
and represent it as 𝑅𝑋𝑛

ΘBase
[1 : 2𝐾]. Note

that the other sampled items (from top-𝐾 + 1 to top-2𝐾) will be
used for the rank-preserving loss computation later.

FINEST creates a novel rank-aware regularization lossLREG (𝑋𝑛)
for any training instance 𝑋𝑛 ∈ 𝑋train. Let us assume the top-2𝐾

Stabilizing Recommendations by Rank-Preserving Fine-Tuning RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore

Figure 3: An illustration of the rank-preserving regularization

(Eq. (3)) used in FINEST. The regularizer aims to preserve the or-

dering and high prediction scores of the top-𝐾 items in the reference

rank lists. With the regularizer, the recommender can generate a

similar top-𝐾 recommendation to the reference one under perturba-

tions. Θ𝐵 and Θ𝐹 indicate ΘBase and ΘFINEST, respectively.

items in the reference rank list 𝑅𝑋𝑛

ΘBase
[1 : 2𝐾] are {𝑖1, . . . , 𝑖2𝐾 } and

Θ𝐹 is a simplified notation of ΘFINEST. Then,

LREG (𝑋𝑛) =

Penalize if the relative ordering of top-𝐾 items is violated︷ ︸︸ ︷
𝐾−1∑︁
𝑘=1

max(Θ𝐹 (𝑖𝑘+1) − Θ𝐹 (𝑖𝑘) + 𝜆1, 0)

+
𝐾∑︁
𝑘=1

max(Θ𝐹 (𝑖𝑘+𝐾) − Θ𝐹 (𝑖𝑘) + 𝜆2, 0)︸ ︷︷ ︸
Penalize if higher prediction score to 𝐾 + 1 to 2𝐾 ranked items than top-𝐾

,

(3)

where 𝜆1 and 𝜆2 are margin values (hyperparameters). 𝑘 = 1 is the
first, i.e., indicating the highest-ranked item.

The first loss term penalizes ifΘ𝐹 gives a higher prediction score
to 𝑖𝑘+1 compared to 𝑖𝑘 . Thus, the role of the first loss term is to
ensure that the relative ordering of top-𝐾 items in 𝑅𝑋𝑛

ΘBase
is also

maintained in 𝑅𝑋𝑛

ΘFINEST
. The second loss term penalizes if Θ𝐹 gives

higher prediction scores to “competitive” items (i.e., {𝑖𝐾+1, . . . , 𝑖2𝐾 })
than to the desired top-𝐾 items {𝑖1, . . . , 𝑖𝐾 }. Thus, the role of the
second loss term is to place the top-𝐾 items from the reference
rank list at the top part of the fine-tuned rank list. Both terms
ensure that the relative positions and ordering of the top-𝐾 sampled
items are the same in both rank lists. This is visualized in Fig. 3.
We underscore that items {𝑖1, . . . , 𝑖2𝐾 } are obtained from the

reference rank list 𝑅
𝑋𝑛

ΘBase
, not the fine-tuned rank list 𝑅𝑋𝑛

ΘFINEST
.

Table 2: Recommendation datasets used for experiments.

Name Users Items Interactions Descriptions

LastFM 980 1,000 1,293,103 Music playing history
Foursquare 2,106 5,597 192,602 Point-of-Interest check-in
Reddit 4,675 953 134,489 Subreddit posting history

The total regularization loss over all non-perturbed training
instances is defined as follows:

LREG =
∑︁

∀𝑋𝑛∈𝑋train\𝑋pert

LREG (𝑋𝑛), (4)

where 𝑋pert is the set of perturbed instances in the current epoch.
LREG is computed only for all non-perturbed instances𝑋train\𝑋pert
of the current epoch. Perturbed instances are excluded because
reference rank lists can be unavailable for perturbed instances.

It is important to highlight the difference between the distillation
loss [63] and the proposed rank-preserving loss. Yue et al. [63] only
choose randomly sampled negative items as “competitors” in the
second loss term of Eq. (3). However, the random selection scheme
does not help in preserving top-𝐾 ranking if the chosen negative
samples are low-ranked in the reference rank lists.

5.4 Step 5: Total Loss

Overall, the total loss of FINEST simultaneously optimizes for the
next-item prediction performance (Eq. (1)) and the rank-preserving
regularization performance (Eq. (4)) as follows:

LFINEST = L + 𝜆LREG, (5)

where 𝜆 indicates the regularization strength (a hyperparameter).
It is essential to optimize both objectives together. If the next-item
prediction loss L is not included, then the model may sacrifice next-
item prediction performance in favor of the stability objective. This
is undesirable as it will reduce the utility of the resulting model.

6 EXPERIMENTS

In this section, we conduct rigorous experimental evaluations of
our fine-tuning method, FINEST, to assess its effectiveness.

6.1 Experimental Settings

Datasets.We use three datasets that are widely used in the existing
literature and span various domains. The statistics are listed in
Table 2. Users with fewer than 10 interactions were filtered out.
• LastFM [15, 19, 22, 28]: This dataset consists of the music-playing
history of users, represented as (user, music, timestamp).
• Foursquare [57, 58, 60, 61]: This dataset represents point-of-
interest information, including user, location, and timestamp.
• Reddit [1, 27, 32, 37]: This dataset contains the posting history of
users on subreddits, represented as (user, subreddit, timestamp).
Target Recommender Models. We aim to improve the model
stability of the following state-of-the-art sequential recommenders.
• TiSASRec [31]: a self-attention based model that utilizes tem-
poral features and positional embeddings for next-item prediction.
• BERT4Rec [45]: a bidirectional Transformer-based model that
uses masked language modeling for sequential recommendations.
• LSTM [20]: a Long Short-Term Memory (LSTM)-based model
that can learn long-term dependencies using LSTM architecture.

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore Sejoon Oh, Berk Ustun, Julian McAuley, & Srijan Kumar

Table 3: Effectiveness of various fine-tuning methods for recommendation models on top-2 largest datasets. FINEST is the best fine-tuning

method as per enhancing model stability (measured by RLS metrics) against random and CASPER [36] deletion perturbations, with statistical

significance (p-values < 0.05) in all cases. FINEST performs the best for other types of perturbations and datasets as well. F.T. = Fine-tuning.

a LastFM Dataset (Music Recommendation; 1.3 Million Interactions)

Input Perturbations Random Deletion Perturbations CASPER [36] Deletion Perturbations

Recommender Models TiSASRec [31] BERT4Rec [45] LSTM [20] TiSASRec [31] BERT4Rec [45] LSTM [20]

RLS Metrics RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard

Original (No F.T.) 0.7528 0.2750 0.7535 0.3164 0.7691 0.2693 0.6938 0.1999 0.7538 0.3157 0.7002 0.1715
Random F.T. 0.7621 0.2953 0.7762 0.3728 0.7865 0.3002 0.7017 0.2153 0.7734 0.3662 0.6989 0.1665

Earliest-Random F.T. 0.7600 0.2902 0.7756 0.3637 0.7804 0.2924 0.7016 0.2124 0.7735 0.3640 0.7000 0.1676
Latest-Random F.T. 0.7630 0.3015 0.7844 0.3797 0.7744 0.2802 0.7034 0.2200 0.7773 0.3672 0.6986 0.1663

APT [56] F.T. 0.7636 0.2967 0.7770 0.3681 0.7792 0.2901 0.7012 0.2119 0.7746 0.3634 0.6992 0.1676
ACAE [59] F.T. 0.7634 0.2944 0.7701 0.3519 0.7792 0.2861 0.6992 0.2103 0.7725 0.3651 0.7000 0.1689

FINEST (Proposed) 0.9207 0.6594 0.8353 0.4824 0.9038 0.5903 0.8727 0.5193 0.8324 0.4757 0.7872 0.3351

Rel. % Improvements +20.6 % +119% +6.5% +27.0% +14.9% +96.6% +24.1% +136% +7.5% +29.5% +12.4% +95.4%

b Foursquare Dataset (POI Recommendation; 0.2 Million Interactions)

Input Perturbations Random Deletion Perturbations CASPER [36] Deletion Perturbations

Recommender Models TiSASRec [31] BERT4Rec [45] LSTM [20] TiSASRec [31] BERT4Rec [45] LSTM [20]

RLS Metrics RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard RBO Jaccard

Original (No F.T.) 0.7680 0.2725 0.7948 0.3542 0.7096 0.1682 0.7787 0.2840 0.7964 0.3566 0.6459 0.1137
Random F.T. 0.7628 0.2618 0.8190 0.4277 0.7078 0.1713 0.7694 0.2660 0.8149 0.4151 0.6470 0.1181

Earliest-Random F.T. 0.7643 0.2571 0.8112 0.4042 0.7152 0.1772 0.7738 0.2663 0.8149 0.4141 0.6476 0.1182
Latest-Random F.T. 0.7582 0.2547 0.8150 0.4151 0.7127 0.1748 0.7622 0.2626 0.8161 0.4173 0.6463 0.1157

APT [56] F.T. 0.7618 0.2965 0.8081 0.3919 0.7077 0.1685 0.7904 0.3247 0.8088 0.4001 0.6482 0.1173
ACAE [59] F.T. 0.7798 0.2918 0.8045 0.3834 0.7137 0.1689 0.7866 0.3025 0.8068 0.3879 0.6503 0.1188

FINEST (Proposed) 0.9368 0.6510 0.8824 0.5080 0.8452 0.4116 0.9374 0.6501 0.8794 0.5056 0.7358 0.2168

Rel. % Improvements +20.1 % +120% +7.7% +18.8% +18.2% +132% +18.6% +100% +7.8% +21.2% +13.1% +82.5%

Next-item Prediction Metrics. To evaluate the next-item predic-
tion accuracy, we use two popular metrics, namely, Mean Reciprocal
Rank (MRR) and Recall@𝐾 (typically 𝐾 = 10 [16, 27]). The met-
ric values are between 0 to 1, and higher values are better. These
metrics only focus on the rank of the ground-truth next item, not
the ordering of all items in a rank list. Thus, they are unsuitable to
measure the model stability against input perturbations.

Training Data Perturbation Methods.

• Random, Earliest-Random, and Latest-Random: Random
perturbation manipulates randomly chosen interactions among all
training interactions, while Earliest-Random and Latest-Random
approaches perturb randomly selected interactions among the first
and last 10% interactions of users, respectively.
• Data-free [63]: Data-free [63] perturbation generates fake user
profiles via T-FGSM [14] to promote target items. To adapt it to our
setting, (1) we find the most similar users in the original training
data to those fake users, and (2) either inject generated fake interac-
tions to such similar users’ sequences or perform deletions or item
replacements to similar users’ interactions.
• CASPER [36]: CASPER [36] is the state-of-the-art interaction-
level perturbation for sequential recommendation models. FINEST
employs a graph-based approximation to find the most effective
perturbation in the training data to alter RLS metrics.

Note that we use the least popular item for injection and item
replacement perturbations since they are the most effective [36].
FINEST does not know what perturbations will be applied to the
training data during its fine-tuning process.
Baseline Fine-tuning Methods to Compare against FINEST.

• Original: It trains a recommender model on original training
data (without fine-tuning) with standard next-item prediction loss.
• Random, Earliest-Random, and Latest-Random: The Ran-
dom method perturbs 1% of random training interactions for every
epoch (either deletion, insertion, or replacement) and fine-tunes a
recommender model with the perturbed data. The Earliest-Random
and Latest-Random randomly perturb 1% of interactions in the
first and last 10% (based on timestamps) of the training data and
fine-tune the model with the perturbed data, respectively.
• Adversarial Poisoning Training (APT) [56]: APT is the state-
of-the-art adversarial training method that fine-tunes a recom-
mendation model using perturbed training data, including fake user
profiles. Since it only works for matrix factorization-based models,
we replace the fake user generation part with the Data-free [63]
model and fine-tune the recommender with the perturbed data.
• ACAE [59]: ACAE is another state-of-the-art adversarial train-
ing model that adds gradient-based noise (found by the fast gradient
method [14]) to the model parameters while fine-tuning a recom-
mendation model. To adapt it to our setting, we add noise to the
input sequence embeddings instead of model parameters.

We exclude other fine-tuning methods designed for multimodal
recommender systems [3, 48] which require additional input data
like images or show similar or worse performance [2, 11, 18, 55, 65]
than existing baselines such as APT [56] or ACAE [59].
Experimental Setup. We use the first 90% of interactions of each
user for training and validation, and the rest of the interactions
are used for testing. To train recommender models, we use the
hyperparameters suggested in their original publications. Other
common hyperparameters are set as follows: the maximum training

Stabilizing Recommendations by Rank-Preserving Fine-Tuning RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore

Table 4: Next-item prediction performance of FINEST on LastFM and

Foursquare datasets (no perturbations). FINEST successfully pre-

serves or enhances next-itemmetrics of all recommendation models.

Results with * indicate statistical significance (p-value < 0.05).

a LastFM Dataset

Recommender TiSASRec [31] BERT4Rec [45] LSTM [20]

Next-item Metrics MRR

Recall

@10
MRR

Recall

@10
MRR

Recall

@10

Original Model 0.154 0.277 0.158 0.318 0.156 0.235
FINEST (Proposed) 0.164* 0.299* 0.168* 0.343* 0.169* 0.252*

b Foursquare Dataset

Recommender TiSASRec [31] BERT4Rec [45] LSTM [20]

Next-item Metrics MRR

Recall

@10
MRR

Recall

@10
MRR

Recall

@10

Original Model 0.082 0.137 0.162 0.267 0.096 0.166
FINEST (Proposed) 0.088 0.143 0.175* 0.283* 0.102 0.174

(a) RBO on Random Perturbation (b) Jaccard on Random Perturbation

(c) RBO on CASPER Perturbation (d) Jaccard on CASPER Perturbation

Figure 4: Stability of the BERT4Rec model fine-tuned with diverse

methods against random and CASPER [36] deletion perturbations

across different datasets. FINEST generates the most stable model

against both perturbations as per RBO and Top-10 Jaccard Similarity.

epoch is set to 100, a learning rate is set to 0.001, and the embed-
ding dimension is set to 128. For all recommendation models, the
maximum sequence length per user is set to 50. We also perturb
0.1% of training interactions, as described in Section 3. We repeat
all experiments three times and report average values of RLS and
next-item metrics. For FINEST, we use the following hyperparame-
ters (found by grid searches on validation data). The sampling ratio
of interactions for perturbation simulations is set to 1%, and we
sample the top-200 items for regularization, and the regularization
coefficients 𝜆, 𝜆1, 𝜆2 are set to 1.0, 0.1, and 0.1, respectively. We
assign 50 epochs for fine-tuning. To measure statistical significance,
we use the one-tailed t-test.

6.2 Effectiveness of FINEST

Fine-tuningmethod comparison on the LastFMand Foursquare

datasets. In Table 3, we compare the performance of all fine-tuning

methods on all three recommendation models against random and
CASPER [36] deletion perturbations on the LastFM and Foursquare
datasets. We highlight the results on these two datasets as they are
the top-2 largest ones as per the number of interactions. Each col-
umn shows the original method without any fine-tuning and the
best fine-tuning method with the highest RLS value. Note that most
stability analysis results against the Data-free [63] perturbation are
omitted due to the space limits (some of them are summarized in
Table 5), but they show a similar trend to Table 3.

Our proposed fine-tuning method FINEST outperforms all of
the baselines across all recommender systems, with statistical signif-
icance in all cases (p-values < 0.05). FINEST demonstrates significant
improvements in RLS metrics compared to the results of original
training and baselines. For instance, on the LSTM model (the most
susceptible one against CASPER perturbation), FINEST shows at
least 12.4% RBO and 82.5% Jaccard improvements versus the best
baseline. Even on the BERT4Recmodel (the most stable one against
CASPER perturbation), FINEST still exhibits at least 7.5% RBO and
21.2% Jaccard score boosts versus the best baseline. Baseline fine-
tuning methods have limitations in improving model stability since
they do not incorporate the rank list preservation component in
their fine-tuning. We observe the same trend for other types of per-
turbations and datasets (see Fig. 4 and Table 5). Thus, with FINEST,
the state-of-the-art recommender systems can generate stable and
trustworthy rank lists of items even after perturbations.
Impact of FINEST on next-item prediction accuracy. Fine-
tuning the recommender with randomly sampled perturbations can
increase or preserve the next-item prediction accuracy (e.g., MRR
and Recall@10). This is due to the implicit data augmentation and
cleaning effect from the perturbed training examples. We validate the
improvements of both next-item prediction performance and model
stability in Table 4 (on the LastFM and Foursquare datasets, with
no perturbations). Table 4 demonstrates that FINEST can boost the
model stability without sacrificing its next-item prediction accu-
racy with statistical significance in most cases. TiSASRec shows
relatively lower next-item prediction performance as it is optimized
for sampled metrics, which computes ranking with negative items
during the test. For more details, please refer to the paper [26].
Meanwhile, the other models are optimized over all items.
Fine-tuning method comparison on different datasets. We
further evaluate the effectiveness of FINEST versus the baselines
on the BERT4Rec model (which shows high accuracy and stability)
across various datasets. The results are shown in Fig. 4. We find
that FINEST exhibits the highest model stability with statistical sig-
nificance (p-values < 0.05) across all datasets and two perturbations,
as per both RLS metrics. For instance, on the LastFM dataset (the
largest one in terms of the number of interactions), FINEST offers
at least 6.5% stability improvements compared to baselines in terms
of RBO and at least 27% in top-10 Jaccard similarity.
Effectiveness of FINEST against diverse perturbation types.

We test the generalizability of FINEST in boosting model stabil-
ity against various interaction-level perturbation algorithms and
types. As shown in Table 5, FINEST improves the RBO metric of
the BERT4Rec model against various perturbations on the LastFM
dataset, across three perturbation types. The Jaccard metric shows a
similar trend. Against CASPER [36], FINEST boosts the RBO of the

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore Sejoon Oh, Berk Ustun, Julian McAuley, & Srijan Kumar

Table 5: RLS metric (RBO) of FINEST against diverse interaction-level perturbation algorithms and types on BERT4Rec model and LastFM dataset.

FINEST successfully enhances the model stability of BERT4Rec against all types of input perturbations with statistical significance. Pert. =

Perturbations, R. = Random, E.R. = Earliest-Random, L.R. = Latest-Random, D.F. = Data-free [63], CAS. = CASPER [36], Orig. = Original Model.

a Perturbation Type: Insertion

Pert. R. E.R. L.R. D.F. CAS.

Orig. 0.75 0.75 0.76 0.76 0.75
FINEST 0.83 0.84 0.84 0.84 0.84

b Perturbation Type: Item Replacement

Pert. R. E.R. L.R. D.F. CAS.

Orig. 0.91 0.96 0.88 0.96 0.84
FINEST 0.94 0.97 0.91 0.97 0.88

c Perturbation Type: Deletion

Pert. R. E.R. L.R. D.F. CAS.

Orig. 0.75 0.75 0.75 0.75 0.75
FINEST 0.84 0.83 0.84 0.84 0.83

Figure 5: Stability of BERT4Rec fine-tuned with and without FINEST

as per the number of input perturbations on the LastFM dataset.

model by at least 5.4%. These results indicate that FINEST consis-
tently enhances model stability, regardless of input perturbations.
It is worth noting that insertion and deletion perturbations lead
to similar model stability, while item replacement perturbations
are the least effective. This is because replacing items has little im-
pact on constructing training sequences of items than injecting or
deletion interactions. FINEST can also enhance the model stability
against a mix of the above interaction perturbations (omitted due
to the space limits).

6.3 Model Stability against Large Perturbations

We test how much the RLS metric of FINEST changes with respect
to the number of input perturbations, since more perturbations will
naturally lower the model stability further. Fig. 5 shows the RBO
scores of the BERT4Recmodel trained with and without FINEST on
the LastFM dataset against CASPER deletion perturbations while
varying the perturbation scale from 0.1% to 10%. FINEST provides
significant improvements in the model stability compared to the
original model across all perturbation scales.

6.4 Scalability of FINEST

The time and space complexities of FINEST scale near-linearly to
the number of interactions and items in a dataset. Empirically,
we also confirm that FINEST can enhance the stability of rec-
ommenders on large-scale datasets such as MovieLens-10M [17]
(72K users, 10K items, and 10M interactions) or Steam [24] (2.6M
users, 15K items, and 7.8M interactions) datasets. For instance,
BERT4Rec with FINEST shows a 12% improvement in the RBO
metric (0.763→ 0.853) compared to the original BERT4Rec on the
Steam dataset with random perturbations.

Figure 6: FINEST enhances the stability of recommendations across

all user groups with different next-item prediction accuracies. These

results are for recommendations from the BERT4Rec model on the

LastFM dataset with respect to the CASPER [36] perturbation.

Table 6: Ablation study of the key components of FINEST.

RLS metrics Next-item metrics

Fine-tuning Methods / Metrics RBO Jaccard MRR Recall

Original (no fine-tune) 0.7538 0.3157 0.1580 0.3181
FINEST without

Perturbation Simulation
0.8124 0.4349 0.1634 0.3324

FINEST without

Top-𝐾 Regularization
0.7734 0.3662 0.1665 0.3366

FINEST without

First Regularization Term
0.8268 0.4658 0.1663 0.3379

FINEST without

Second Regularization Term
0.7955 0.4245 0.1713 0.3513

FINEST (proposed) 0.8324 0.4757 0.1682 0.3434

6.5 Effectiveness on Different User Groups

It has been shown that input perturbations can disproportionately
affect users’ recommendation results [36]. A stability analysis result
of the BERT4Recmodel on the LastFM dataset against the CASPER
perturbation supports that observation. As shown in Fig. 6, a low-
accuracy user group (with the lowest 20% MRR metric on average
among all users) receives unstable recommendations compared to
the high-accuracy group. This can raise fairness concerns between
user groups similar to “the rich get richer” problem. FINEST can
mitigate this issue by enhancing the stability of the model, thereby
narrowing the relative stability difference between the two groups
(e.g., 143% without FINEST→ 62% with FINEST).

6.6 Ablation Studies of FINEST

We verify the contributions of the perturbation simulation and
rank-preserving regularization of FINEST by measuring the model
stability after removing each component. Table 6 shows the ablation
study results on the BERT4Rec model and LastFM dataset against
CASPER deletion perturbations in terms of RLS and next-item

Stabilizing Recommendations by Rank-Preserving Fine-Tuning RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore

metrics. We observe that all variants of FINEST outperform the
original training (without fine-tuning) in all metrics. Among the
variants, we see that the model without the perturbation simulation
performs better than themodel without the regularization, implying
that the top-𝐾 regularization has a higher impact on enhancing the
model stability. Regarding the regularization function, the “score-
preserving” component (second term in Eq. (3)) is more effective in
terms of RLS metrics than the “ordering-preserving” component
(first term in Eq. (3)). In summary, having both components of
FINEST together results in the highest model stability.

6.7 Hyperparameter Sensitivity of FINEST

Figure 7 exhibits the hyperparameter sensitivity of FINEST with
respect to RLS and next-item metrics on the BERT4Rec model and
LastFM dataset against CASPER deletion perturbations. We change
one hyperparameter while fixing all the others to the default values
stated in Section 6.1. We find that both metrics improve as fine-
tuning continues, and the improvements saturate after sufficient
epochs (e.g., 50) of fine-tuning are done. Regarding the sampling
ratio, we observe the trade-off between RLS and next-item metrics
as the ratio increases. In practice, a small value (e.g., 1%) is preferred
as a high value can hurt the next-item metrics. A medium number
of top-K items (e.g., 100) is best for FINEST since a small value can
have a minor impact on preserving the rank lists, and a large value
can reduce the scalability of FINEST. Finally, a medium value of 𝜆
(e.g., 1) leads to high RLS and next-item metrics, as a small value
limits the effect of the ranking-preserving regularization, while a
large value can lead to inaccurate next-item predictions.

7 DISCUSSION

Why is Fine-tuning Selected over Retraining?Onemay wonder
whether training with FINEST from scratch (instead of fine-tuning)
is sufficient for achieving high model stability. There are two key
reasons why fine-tuning is preferred. First, existing literature in rec-
ommender systems [18, 56, 59] has demonstrated that fine-tuning
mechanisms should be applied when the given model starts to over-
fit [18] for the best model robustness, not when it is still in the early
stage. Thus, it is better to apply the fine-tuning method FINEST
after the model has been trained sufficiently, not from the begin-
ning. Second, our fine-tuning process requires the rank lists of all
training instances as a reference for the regularization. If the model
is not fully trained as per next-item prediction accuracy, the refer-
ence lists will not be optimal. A pre-trained recommendation model
ensures that appropriate reference lists are used. Third, fine-tuning
techniques can be applied to existing pre-trained recommendation
models, rather than requiring models to be trained from scratch.
This makes fine-tuning techniques applicable even to deployed
models that are typically trained extensively.
Should All Rank Lists be Stabilized with FINEST? FINEST fine-
tunes a recommender to generate stable rank lists for all training in-
stances. However, in some cases, the rank list is expected to change
against perturbations. For instance, let us assume a cold-start user
with very few interactions. If we perturb this user’s interaction, the
recommendation should be altered, since every single interaction
of the cold-start user is crucial for its recommendation. Finding
more types of rank lists not to stabilize is worth studying.

Figure 7: Hyperparameter sensitivity of FINEST on the BERT4Rec

model and LastFM dataset against CASPER deletion perturbations.

Handling Diverse Perturbation Methods. In this paper, we fo-
cused on enhancing model stability against interaction-level per-
turbations such as injection, deletion, item replacement, and a mix
of them. However, in the real world, there can be various types of
perturbations such as user-, item-, or embedding-level perturba-
tions. While FINEST can be easily extended to user- and item-level
perturbations by performing the perturbation simulation at the user
or item level, extending FINEST to embedding-level perturbations
is worth investigating as finding embedding perturbations for our
simulations is non-trivial.
Non-Sequential Recommender Systems. As FINEST is opti-
mized for sequential recommenders, its fine-tuning process should
be modified for non-sequential recommendation models, such as
collaborative filtering (CF). For instance, we can apply our rank-
preserving regularization to each user instead of each training
instance for CF-based recommenders. FINEST can be generalized to
multimodal recommendation setup, where recommenders employ
additional modalities such as text or image features for training
and predictions. We leave the empirical validation of FINEST on
such non-sequential recommenders as future work.

RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore Sejoon Oh, Berk Ustun, Julian McAuley, & Srijan Kumar

8 CONCLUSION

Our work paves the path toward robust and reliable recommenda-
tion systems by proposing a novel fine-tuning method with per-
turbation simulations and rank-preserving regularization. Future
work includes extending FINEST to diverse recommendation mod-
els (e.g., reinforcement learning-based), other perturbation settings
(e.g., embedding-level), and creating fine-tuning mechanisms for
various content-aware recommendation models.

REFERENCES

[1] 2020. Reddit data dump. http://files.pushshift.io/reddit/.
[2] Vito Walter Anelli, Alejandro Bellogín, Yashar Deldjoo, Tommaso Di Noia, and

Felice Antonio Merra. 2021. MSAP: Multi-Step Adversarial Perturbations on
Recommender Systems Embeddings. FLAIRS 34 (Apr. 2021).

[3] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and
Felice Antonio Merra. 2021. A study of defensive methods to protect visual
recommendation against adversarial manipulation of images. In SIGIR, ACM.

[4] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra.
2021. A Formal Analysis of Recommendation Quality of Adversarially-trained
Recommenders. In CIKM.

[5] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In ICML. 274–283.

[6] Yuanjiang Cao, Xiaocong Chen, Lina Yao, Xianzhi Wang, and Wei Emma Zhang.
2020. Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems. In SIGIR.

[7] Pablo Castells, Neil Hurley, and Saul Vargas. 2022. Novelty and diversity in
recommender systems. In Recommender systems handbook. 603–646.

[8] Konstantina Christakopoulou and Arindam Banerjee. 2019. Adversarial Attacks
on an Oblivious Recommender. In RecSys.

[9] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and
Even Oldridge. 2021. Transformers4Rec: Bridging the Gap between NLP and
Sequential/Session-Based Recommendation. In RecSys.

[10] T. Di Noia, D. Malitesta, and F. A. Merra. 2020. TAaMR: Targeted Adversarial
Attack against Multimedia Recommender Systems. In DSN-W.

[11] Yali Du, Meng Fang, Jinfeng Yi, Chang Xu, Jun Cheng, and Dacheng Tao. 2018. En-
hancing the robustness of neural collaborative filtering systems under malicious
attacks. IEEE Transactions on Multimedia 21, 3 (2018).

[12] Michael D Ekstrand, Anubrata Das, Robin Burke, and Fernando Diaz. 2022. Fair-
ness in recommender systems. In Recommender systems handbook. 679–707.

[13] Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. 2021. Maxup: Light-
weight adversarial training with data augmentation improves neural network
training. In CVPR. 2474–2483.

[14] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR.

[15] Lei Guo, Hongzhi Yin, Qinyong Wang, Tong Chen, Alexander Zhou, and Nguyen
Quoc Viet Hung. 2019. Streaming session-based recommendation. In SIGKDD.

[16] Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian
Brost, Federico Tomasi, and Mounia Lalmas. 2020. Contextual and sequential
user embeddings for large-scale music recommendation. In RecSys.

[17] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst., Article 19 (Dec. 2015), 19 pages.

[18] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In SIGIR.

[19] Balázs Hidasi and Domonkos Tikk. 2012. Fast ALS-based tensor factorization for
context-aware recommendation from implicit feedback. In ECML PKDD.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997).

[21] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[22] Rolf Jagerman, Ilya Markov, and Maarten de Rijke. 2019. When people change
their mind: Off-policy evaluation in non-stationary recommendation environ-
ments. InWSDM.

[23] Dietmar Jannach and Michael Jugovac. 2019. Measuring the business value of
recommender systems. ACM Transactions on Management Information Systems
(TMIS) 10, 4 (2019), 1–23.

[24] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[25] Maurice George Kendall. 1948. Rank correlation methods. (1948).
[26] Walid Krichene and Steffen Rendle. 2022. On sampled metrics for item recom-

mendation. Commun. ACM 65, 7 (2022), 75–83.
[27] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-

bedding Trajectory in Temporal Interaction Networks. In SIGKDD.

[28] Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang
Chen, and Tat-Seng Chua. 2020. Interactive path reasoning on graph for conver-
sational recommendation. In SIGKDD.

[29] Alexander Levine and Soheil Feizi. 2020. Robustness certificates for sparse
adversarial attacks by randomized ablation. In AAAI, Vol. 34. 4585–4593.

[30] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322–330.

[31] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time Interval Aware Self-
Attention for Sequential Recommendation. In WSDM.

[32] Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and S Yu Philip.
2020. Dynamic graph collaborative filtering. In ICDM.

[33] Fang Liu and Ness Shroff. 2019. Data poisoning attacks on stochastic bandits. In
ICML.

[34] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task
Deep Neural Networks for Natural Language Understanding. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 4487–4496. https://www.aclweb.org/anthology/
P19-1441

[35] John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. 2020.
TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and
Adversarial Training in NLP. In EMNLP.

[36] Sejoon Oh, Berk Ustun, Julian McAuley, and Srijan Kumar. 2022. Rank List
Sensitivity of Recommender Systems to Interaction Perturbations. In CIKM.

[37] Shalini Pandey, George Karypis, and Jaideep Srivasatava. 2021. IACN: Influence-
Aware and Attention-Based Co-evolutionary Network for Recommendation. In
PAKDD.

[38] Dae Hoon Park and Yi Chang. 2019. Adversarial sampling and training for
semi-supervised information retrieval. In WWW.

[39] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking for
recommendation. In RecSys.

[40] Garima Pruthi, Frederick Liu, Mukund Sundararajan, and Satyen Kale. 2020.
Estimating Training Data Influence by Tracking Gradient Descent. NeurIPS.

[41] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. 2020. Certi-
fied robustness to label-flipping attacks via randomized smoothing. In ICML.

[42] João Sá, Vanessa Queiroz Marinho, Ana Rita Magalhães, Tiago Lacerda, and
Diogo Goncalves. 2022. Diversity Vs Relevance: A Practical Multi-objective Study
in Luxury Fashion Recommendations. In SIGIR. 2405–2409.

[43] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. 2018. Defense-GAN:
Protecting Classifiers Against Adversarial Attacks Using Generative Models. In
ICLR.

[44] J. Song, Z. Li, Z. Hu, Y. Wu, Z. Li, J. Li, and J. Gao. 2020. PoisonRec: An Adaptive
Data Poisoning Framework for Attacking Black-box Recommender Systems. In
ICDE.

[45] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In CIKM.

[46] Abigail Swenor. 2022. Using Random Perturbations to Mitigate Adversarial
Attacks on NLP Models. AAAI (2022), 13142–13143.

[47] Huiyi Tan, Junfei Guo, and Yong Li. 2008. E-learning recommendation system.
In CSSE, Vol. 5. IEEE, 430–433.

[48] Jinhui Tang, Xiaoyu Du, Xiangnan He, Fajie Yuan, Qi Tian, and Tat-Seng Chua.
2019. Adversarial training towards robust multimedia recommender system.
TKDE 32, 5 (2019), 855–867.

[49] Jiaxi Tang and Ke Wang. 2018. Ranking distillation: Learning compact ranking
models with high performance for recommender system. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining.
2289–2298.

[50] Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting Adversarially Learned
Injection Attacks Against Recommender Systems. In RecSys.

[51] Thi Ngoc Trang Tran, Alexander Felfernig, Christoph Trattner, and Andreas
Holzinger. 2021. Recommender systems in the healthcare domain: state-of-the-
art and research issues. Journal of Intelligent Information Systems 57, 1 (2021).

[52] JingkangWang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad,
and Bo Li. 2021. Adversarial Attack Generation Empowered by Min-Max Opti-
mization. In Thirty-Fifth Conference on Neural Information Processing Systems.

[53] Yifan Wang, Weizhi Ma, Min Zhang*, Yiqun Liu, and Shaoping Ma. 2022. A
Survey on the Fairness of Recommender Systems. ACM Journal of the ACM
(JACM) (2022).

[54] William Webber, Alistair Moffat, and Justin Zobel. 2010. A similarity measure
for indefinite rankings. ACM TOIS (2010).

[55] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, and Enhong Chen. 2021. Triple
Adversarial Learning for Influence based Poisoning Attack in Recommender
Systems. In SIGKDD.

[56] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, Enhong Chen, and Senchao
Yuan. 2021. Fight Fire with Fire: Towards Robust Recommender Systems via
Adversarial Poisoning Training. In SIGIR. 1074–1083.

http://files.pushshift.io/reddit/
https://www.aclweb.org/anthology/P19-1441
https://www.aclweb.org/anthology/P19-1441

Stabilizing Recommendations by Rank-Preserving Fine-Tuning RecSys FAccTRec Workshop ’23, September 18-22, 2023, Singapore

[57] Carl Yang, Lanxiao Bai, Chao Zhang, Quan Yuan, and Jiawei Han. 2017. Bridging
collaborative filtering and semi-supervised learning: a neural approach for poi
recommendation. In SIGKDD.

[58] Mao Ye, Peifeng Yin, and Wang-Chien Lee. 2010. Location recommendation for
location-based social networks. In SIGSPATIAL. 458–461.

[59] Feng Yuan, Lina Yao, and Boualem Benatallah. 2019. Adversarial collaborative
neural network for robust recommendation. In SIGIR.

[60] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.
2013. Time-aware point-of-interest recommendation. In SIGIR.

[61] Quan Yuan, Gao Cong, and Aixin Sun. 2014. Graph-based point-of-interest
recommendation with geographical and temporal influences. In CIKM.

[62] Xiaofang Yuan, Ji-Hyun Lee, Sun-Joong Kim, and Yoon-Hyun Kim. 2013. Toward
a user-oriented recommendation system for real estate websites. Information
Systems 38, 2 (2013), 231–243.

[63] Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian McAuley. 2021. Black-Box
Attacks on Sequential Recommenders via Data-Free Model Extraction. In RecSys.

[64] Hengtong Zhang, Y. Li, B. Ding, and Jing Gao. 2020. Practical Data Poisoning
Attack against Next-Item Recommendation. In TheWebConf.

[65] Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne Xin Zhao,
and Jing Gao. 2021. Data Poisoning Attack against Recommender System Using
Incomplete and Perturbed Data. In SIGKDD.

[66] Dávid Zibriczky12. 2016. Recommender systems meet finance: a literature review.
In Proc. 2nd Int. Workshop Personalization Recommender Syst. 1–10.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Setup
	5 Proposed Methodology
	5.1 Step 2: Perturbation Simulations
	5.2 Step 3: Next-item Prediction on Perturbed Simulations
	5.3 Step 4: Rank-preserving Regularization
	5.4 Step 5: Total Loss

	6 Experiments
	6.1 Experimental Settings
	6.2 Effectiveness of FINEST
	6.3 Model Stability against Large Perturbations
	6.4 Scalability of FINEST
	6.5 Effectiveness on Different User Groups
	6.6 Ablation Studies of FINEST
	6.7 Hyperparameter Sensitivity of FINEST

	7 Discussion
	8 Conclusion
	References

