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Abstract—How can we analyze tensors that are composed of
0’s and 1’s? How can we efficiently analyze such Boolean tensors
with millions or even billions of entries? Boolean tensors often
represent relationship, membership, or occurrences of events
such as subject-relation-object tuples in knowledge base data
(e.g., ‘Seoul’-‘is the capital of’-‘South Korea’). Boolean tensor
factorization (BTF) is a useful tool for analyzing binary tensors
to discover latent factors from them. Furthermore, BTF is known
to produce more interpretable and sparser results than normal
factorization methods. Although several BTF algorithms exist,
they do not scale up for large-scale Boolean tensors.

In this paper, we propose DBTF, a distributed algorithm for
Boolean tensor factorization running on the Spark framework.
By caching computation results, exploiting the characteristics
of Boolean operations, and with careful partitioning, DBTF
successfully tackles the high computational costs and minimizes
the intermediate data. Experimental results show that DBTF
decomposes up to 163–323× larger tensors than existing methods
in 68–382× less time, and exhibits near-linear scalability in terms
of tensor dimensionality, density, rank, and machines.

I. INTRODUCTION

How can we analyze tensors that are composed of 0’s and

1’s? How can we efficiently analyze such Boolean tensors

that have millions or even billions of entries? Many real-

world data can be represented as tensors, or multi-dimensional

arrays. Among them, many are composed of only either 0 or

1. Those tensors often represent relationship, membership, or

occurrences of events. Examples of such data include subject-

relation-object tuples in knowledge base data (e.g., ‘Seoul’-

‘is the capital of’-‘South Korea’), source IP-destination IP-

port number-timestamp in network intrusion logs, and user1

ID-user2 ID-timestamp in friendship network data. Tensor

factorizations are widely-used tools for analyzing tensors.

CANDECOMP/PARAFAC (CP) and Tucker are two major

tensor factorization methods [1]. These methods decompose a

tensor into a sum of rank-1 tensors, from which we can find the

latent structure of the data. Tensor factorization methods can

be classified according to the constraint placed on the resulting

rank-1 tensors [2]. The unconstrained form allows entries in

the rank-1 tensors to be arbitrary real numbers, where we

find linear relationships between latent factors; when a non-

negativity constraint is imposed on the entries, the resulting

factors reveal parts-of-whole relationships.

What we focus on in this paper is yet another approach

with Boolean constraints, named Boolean tensor factorization

(BTF) [3], that has many interesting applications including

TABLE I: Comparison of the scalability of our proposed DBTF and
existing methods for Boolean tensor factorization. The scalability
bottlenecks are colored red. As the only distributed approach, DBTF
exhibits high scalability across all aspects of dimensionality, density,
and rank; on the other hand, other methods show limited scalability
for some aspects.

Method Dimensionality Density Rank Distributed

Walk’n’Merge [2] Low Low High No
BCP ALS [3] Low High High No

DBTF High High High Yes

clustering, latent concept discovery, synonym finding, recom-

mendation, and link prediction. BTF requires that the input

tensor and all factor matrices be binary. Furthermore, BTF

uses Boolean sum instead of normal addition, which means

1+1 = 1 in BTF. When the data is binary, BTF is an appealing

choice as it can reveal Boolean structures and relationships

underlying the binary tensor that are hard to be found by

other factorizations. Also, BTF is known to produce more

interpretable and sparser results than the unconstrained and

the non-negativity constrained counterparts, though at the ex-

pense of increased computational complexity [3], [4]. Several

algorithms have been developed for BTF [3], [2], [5], [6].

While their scalability varies, they are not scalable enough for

large-scale tensors with millions or even billions of non-zeros

that have become widespread. The major challenges that need

to be tackled for fast and scalable BTF are 1) how to minimize

the computational costs involved with updating Boolean factor

matrices, and 2) how to minimize the intermediate data that

are generated in the process of factorization. Existing methods

fail to solve both of these challenges.

In this paper, we propose DBTF (Distributed Boolean

Tensor Factorization), a distributed algorithm for Boolean

CP factorization running on the Spark framework. DBTF

tackles the high computational cost by utilizing caching in an

efficient greedy algorithm for updating factor matrices, while

minimizing the generation and shuffling of intermediate data.

Also, DBTF exploits the characteristics of Boolean operations

in solving both of the above problems. Due to the effective

algorithm designed carefully with these ideas, DBTF achieves

higher efficiency and scalability compared to existing methods.

Table I shows a comparison of the scalability of DBTF and

existing methods.

The main contributions of this paper are as follows:
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(a) Dimensionality.
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(b) Density.
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(c) Rank.

Fig. 1: The scalability of DBTF and other methods with respect to the dimensionality, density, and rank of a tensor. o.o.t.: out of time (takes
more than 6 hours). DBTF decomposes up to 163–323× larger tensors than existing methods in 68–382× less time (Figure 1(a)). Overall,
DBTF achieves 13–716× speed-up, and exhibits near-linear scalability with regard to all data aspects.

• Algorithm. We propose DBTF, a distributed algorithm

for Boolean CP factorization, which is designed to scale

up to large tensors by minimizing intermediate data,

caching computation results, and carefully partitioning

the workload.

• Theory. We provide an analysis of the proposed algo-

rithm in terms of time complexity, memory requirement,

and the amount of shuffled data.

• Experiment. We present extensive empirical evidences

for the scalability and performance of DBTF. The ex-

perimental results show that the proposed method de-

composes up to 163–323× larger tensors than existing

methods in 68–382× less time, as shown in Figure 1.

The binary code of our method and datasets used in this

paper are available at http://datalab.snu.ac.kr/dbtf. The rest

of the paper is organized as follows. Section II presents the

preliminaries for the normal and Boolean CP factorizations.

In Section III, we describe our proposed method for fast

and scalable Boolean CP factorization. Section IV presents

the experimental results. After reviewing related works in

Section V, we conclude in Section VI.

II. PRELIMINARIES

In this section, we present the notations and operations used

for tensor decomposition, and define the normal and Boolean

CP decompositions, After that, we introduce approaches for

computing Boolean CP decomposition. Table II lists the defi-

nitions of symbols used in the paper.

A. Notation

We denote tensors by boldface Euler script letters (e.g., X),

matrices by boldface capitals (e.g., A), vectors by boldface

lowercase letters (e.g., a), and scalars by lowercase letters

(e.g., a).

Tensor. Tensor is a multi-dimensional array. The dimension

of a tensor is also referred to as mode or way. A tensor

X ∈ R
I1×I2×···×IN is an N -mode or N -way tensor. The

(i1, i2, · · · , iN )-th entry of a tensor X is denoted by xi1i2···iN .

A colon in the subscript indicates taking all elements of that

mode. For a three-way tensor X, x:jk, xi:k, and xij: denote

column (mode-1), row (mode-2), and tube (mode-3) fibers,

TABLE II: Table of symbols.

Symbol Definition

X tensor (Euler script, bold letter)
A matrix (uppercase, bold letter)
a column vector (lowercase, bold letter)
a scalar (lowercase, italic letter)
R rank (number of components)

X(n) mode-n matricization of a tensor X
|X| number of non-zeros in the tensor X
‖X‖ Frobenius norm of the tensor X

AT transpose of matrix A
◦ outer product
⊗ Kronecker product
� Khatri-Rao product
� pointwise vector-matrix product
B set of binary numbers, i.e., {0, 1}
∨ Boolean sum of two binary tensors∨

Boolean summation of a sequence of binary tensors
� Boolean matrix product

I , J , K dimensions of each mode of an input tensor X

respectively. |X| denotes the number of non-zero elements in

a tensor X; ‖X‖ denotes the Frobenius norm of a tensor X,

and is defined as
√∑

i,j,k x
2
ijk.

Tensor matricization/unfolding. The mode-n matricization

(or unfolding) of a tensor X ∈ R
I1×I2×···×IN , denoted

by X(n), is the process of unfolding X into a matrix by

rearranging its mode-n fibers to be the columns of the resulting

matrix. For instance, a three-way tensor X ∈ R
I×J×K and its

matricizations are mapped as follows:

xijk → [X(1)]ic where c = j + (k − 1)J

xijk → [X(2)]jc where c = i+ (k − 1)I

xijk → [X(3)]kc where c = i+ (j − 1)I.

(1)

Outer product and rank-1 tensor. We use ◦ to denote the

vector outer product. The three-way outer product of vectors

a ∈ R
I ,b ∈ R

J , and c ∈ R
K , is a tensor X = a ◦ b ◦ c ∈

R
I×J×K whose element (i, j, k) is defined as (a ◦b ◦ c)ijk =

aibjck. A three-way tensor X is rank-1 if it can be expressed

as an outer product of three vectors.
Kronecker product. The Kronecker product of matrices A ∈
R

I1×J1 and B ∈ R
I2×J2 produces a matrix of size I1I2-by-

J1J2, which is defined as:

107410741074106010601060106010601060107210721072



A⊗B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1J1
B

a21B a22B · · · a2J1
B

...
...

. . .
...

aI11B aI12B · · · aI1J1B

⎤
⎥⎥⎥⎦ . (2)

Khatri-Rao product. The Khatri-Rao product (or column-

wise Kronecker product) of matrices A and B that have the

same number of columns, say R, is defined as:

A�B = [a:1 ⊗ b:1 a:2 ⊗ b:2 · · · a:R ⊗ b:R]. (3)

If the sizes of A and B are I-by-R and J-by-R, respectively,

that of A�B is IJ-by-R.

Pointwise vector-matrix product. We define the pointwise

vector-matrix product of a row vector a ∈ R
R and a matrix

B ∈ R
J×R as:

a�B = [a1b:1 a2b:2 · · · aRb:R]. (4)

Set of binary numbers. We use B to denote the set of binary

numbers, that is, {0, 1}.
Boolean summation. We use

∨
to denote the Boolean sum-

mation, in which a sequence of Boolean tensors or matrices

are summed. The Boolean sum (∨) of two binary tensors

X ∈ B
I×J×K and Y ∈ B

I×J×K , is defined by:

(X ∨ Y)ijk = xijk ∨ yijk. (5)

The Boolean sum of two binary matrices is defined analo-

gously.

Boolean matrix product. The Boolean product of two binary

matrices A ∈ B
I×R and B ∈ B

R×J is defined as:

(A�B)ij =
R∨

k=1

aikbkj . (6)

B. Tensor Rank and Decomposition

1) Normal tensor rank and CP decomposition: With the

above notations, we first define the normal tensor rank and

CP decomposition.

Definition 1. (Tensor rank) The rank of a three-way tensor X

is the smallest integer R such that there exist R rank-1 tensors

whose sum is equal to the tensor X, i.e.,

X =
R∑
i=1

ai ◦ bi ◦ ci. (7)

Definition 2. (CP decomposition) Given a tensor X ∈
R

I×J×K and a rank R, find factor matrices A ∈ R
I×R,

B ∈ R
J×R, and C ∈ R

K×R such that they minimize
∥∥∥∥∥X−

R∑
i=1

ai ◦ bi ◦ ci
∥∥∥∥∥ . (8)

CP decomposition can be expressed in a matricized form as

follows [1]:
X(1) ≈ A(C�B)T

X(2) ≈ B(C�A)T

X(3) ≈ C(B�A)T .

(9)

2) Boolean tensor rank and CP decomposition: We now

define the Boolean tensor rank and CP decomposition. The

definitions of Boolean tensor rank and CP decomposition

differ from their normal counterparts in the following two

respects: 1) the tensor and factor matrices are binary; 2)

Boolean sum is used where 1 + 1 is defined to be 1.

Definition 3. (Boolean tensor rank) The Boolean rank of a

three-way binary tensor X is the smallest integer R such that

there exist R rank-1 binary tensors whose Boolean summation

is equal to the tensor X, i.e.,

X =

R∨
i=1

ai ◦ bi ◦ ci. (10)

Definition 4. (Boolean CP decomposition) Given a binary

tensor X ∈ B
I×J×K and a rank R, find binary factor matrices

A ∈ B
I×R, B ∈ B

J×R, and C ∈ B
K×R such that they

minimize ∣∣∣∣∣X−
R∨
i=1

ai ◦ bi ◦ ci
∣∣∣∣∣ . (11)

Boolean CP decomposition can be expressed in matricized

form as follows [3]:

X(1) ≈ A� (C�B)T

X(2) ≈ B� (C�A)T

X(3) ≈ C� (B�A)T .

(12)

Figure 2 illustrates the rank-R Boolean CP decomposition of

a three-way tensor.

Fig. 2: Rank-R Boolean CP decomposition of a three-way tensor X.
X is decomposed into three Boolean factor matrices A, B, and C.

Computing the Boolean CP decomposition. The alternating

least squares (ALS) algorithm is the “workhorse” approach

for normal CP decomposition [1]. With a few changes, ALS

projection heuristic provides a framework for computing the

Boolean CP decomposition as shown in Algorithm 1.

The framework in Algorithm 1 is composed of two parts:

first, the initialization of factor matrices (line 2), and second,

the iterative update of each factor matrix in turn (lines 4-6). At

each step of the iterative update phase, the n-th factor matrix is

updated given the mode-n matricization of the input tensor X

with the goal of minimizing the difference between the input

107510751075106110611061106110611061107310731073



Algorithm 1: Boolean CP Decomposition Framework

Input: A three-way binary tensor X ∈ B
I×J×K , rank R, and

maximum iterations T .
Output: Binary factor matrices A ∈ B

I×R, B ∈ B
J×R, and

C ∈ B
K×R.

1 initialize factor matrices A, B, and C
2 for t ← 1..T do
3 update A such that |X(1) −A� (C�B)T | is minimized

4 update B such that |X(2) −B� (C�A)T | is minimized

5 update C such that |X(3) −C� (B�A)T | is minimized
6 if converged then
7 break out of for loop

8 return A, B, and C

tensor X and the approximate tensor reconstructed from the

factor matrices, while the other factor matrices are fixed.

The convergence criterion for Algorithm 1 is either one

of the following: 1) the number of iterations exceeds the

maximum value T , or 2) the sum of absolute differences

between the input tensor and the reconstructed one does not

change significantly for two consecutive iterations (i.e., the

difference between the two errors is within a small threshold).

Using the above framework, Miettinen [3] proposed a

Boolean CP decomposition method named BCP ALS. How-

ever, since BCP ALS is designed to run on a single machine,

the scalability and performance of BCP ALS are limited by

the computing and memory capacity of a single machine. Also,

the initialization scheme used in BCP ALS has high space and

time requirements which are proportional to the squares of

the number of columns of each unfolded tensor. Due to these

limitations, BCP ALS cannot scale up to large-scale tensors.

Walk’n’Merge [2] is a different approach for Boolean tensor

factorization: representing the tensor as a graph, Walk’n’Merge

performs random walks on it to identify dense blocks (rank-1
tensors), and merge these blocks to get larger, yet dense blocks.

While Walk’n’Merge is a parallel algorithm, its scalability is

still limited. Since it is not a distributed method, Walk’n’Merge

suffers from the same limitations of a single machine. Also, as

the size of tensor increases, the running time of Walk’n’Merge

rapidly increases as we show in Section IV-B.

III. PROPOSED METHOD

In this section, we describe DBTF, our proposed method

for distributed Boolean tensor factorization. There are several

challenges to efficiently perform Boolean tensor factorization

in a distributed environment.

1) Minimize intermediate data. The amount of intermedi-

ate data that are generated and shuffled across machines

affects the performance of a distributed algorithm signif-

icantly. How can we minimize the intermediate data?

2) Minimize flops. Boolean tensor factorization is an NP-

hard problem [3] with a high computational cost. How

can we minimize the number of floating point operations

(flops) for updating factor matrices?

3) Exploit the characteristics of Boolean operations.
In contrast to the normal tensor factorization, Boolean

tensor factorization applies Boolean operations to binary

data. How can we exploit the characteristics of Boolean

operations to design an efficient and scalable algorithm?

We address the above challenges with the following main

ideas, which we describe in later subsections.

1) Distributed generation and minimal transfer of in-
termediate data remove redundant data generation and

reduce the amount of data transfer. (Section III-B).

2) Caching intermediate computation results decreases

the number of flops remarkably by exploiting the char-

acteristics of Boolean operations. (Section III-C).

3) Careful partitioning of the workload facilitates reuse

of intermediate results and minimizes data shuffling.

(Section III-D).

We first give an overview of how DBTF updates the factor

matrices (Section III-A), and then describe how we address the

aforementioned scalability challenges in detail (Sections III-B

to III-D). After that, we give a theoretical analysis of DBTF

(Section III-G).

A. Overview
DBTF is a distributed Boolean CP decomposition algorithm

based on the framework described in Algorithm 1. The core

operation of DBTF is updating the factor matrix (lines 3-5

in Algorithm 1). Since the update steps are similar, we focus

on updating the factor matrix A. DBTF performs a column-

wise update row by row: DBTF iterates over the rows of

factor matrix for R column (outer)-iterations in total, updating

column c (1 ≤ c ≤ R) of each row at column-iteration c.
Figure 3 shows an overview of how DBTF updates a factor

matrix. In Figure 3, the red rectangle indicates the column c
currently being updated, and the gray rectangle in A refers to

the row DBTF is visiting in row (inner)-iteration i.
The objective of updating the factor matrix is to minimize

the difference between X(1) and A � (C � B)T . To do so,

���������	 ���������
 ����������

�������������������	 ���������
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Fig. 3: An overview of updating a factor matrix. DBTF performs
a column-wise update row by row: DBTF iterates over the rows
of factor matrix for R column (outer)-iterations in total, updating
column c (1 ≤ c ≤ R) of each row at column-iteration c. The
red rectangle in A indicates the column c currently being updated;
the gray rectangle in A refers to the row DBTF is visiting in row
(inner)-iteration i; blue rectangles in (C�B)T are the rows that are
Boolean summed to be compared against the i-th row of X(1) (gray

rectangle in X(1)). Vertical blocks in (C�B)T and X(1) represent
partitioning of the data (see Section III-D for details on partitioning).
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DBTF computes
∣∣X(1) −A� (C�B)T

∣∣ for combinations

of values of entries in column c (i.e., a:c), and update column c
to the set of values that yield the smallest difference. To calcu-

late the difference at row-iteration i, DBTF compares [X(1)]i:
(gray rectangle in X(1) in Figure 3) against [A�(C�B)T ]i: =
ai:� (C�B)T . Then an entry aic is updated to the value that

gives a smaller difference
∣∣[X(1)]i:−ai:�(C�B)T

∣∣.
Lemma 1. ai: � (C�B)T is the same as selecting rows of
(C�B)T that correspond to the indices of non-zeros of ai:,
and performing a Boolean summation of those rows.

Proof. This follows from the definition of Boolean matrix

product � (Equation 6).

Consider Figure 3 as an example: since ai: is 0101 (gray

rectangle in A), ai: � (C � B)T is identical to the Boolean

summation of the second and fourth rows (blue rectangles).
Note that an update of the i-th row of A does not depend

on those of other rows since ai: � (C � B)T needs to be

compared only with [X(1)]i:. Therefore, the determination of

whether to update column entries in A to 0 or 1 can be made

independently of each other.

B. Distributed Generation and Minimal Transfer of Interme-
diate Data

The first challenge for updating a factor matrix in a dis-

tributed manner is how to generate and distribute the interme-

diate data efficiently. Updating a factor matrix involves two

types of intermediate data: 1) a Khatri-Rao product of two

factor matrices (e.g., (C � B)T ), and 2) an unfolded tensor

(e.g., X(1)).
Khatri-Rao product. A naive method for processing the

Khatri-Rao product is to construct the entire Khatri-Rao prod-

uct first, and then distribute its partitions across machines.

While Boolean factors are known to be sparser than the

normal counterparts with real-valued entries [4], performing

the entire Khatri-Rao product is still an expensive operation.

Also, since one of the two matrices involved in the Khatri-Rao

product is always updated in the previous update procedure

(Algorithm 1), prior Khatri-Rao products cannot be reused.

Our idea is to distribute only the factor matrices, and then let

each machine generate the part of the product it needs, which

is possible according to the definition of Khatri-Rao product:

A�B =

⎡
⎢⎢⎢⎣

a11b:1 a12b:2 · · · a1Rb:R

a21b:1 a22b:2 · · · a2Rb:R

...
...

. . .
...

aI1b:1 aI2b:2 · · · aIRb:R

⎤
⎥⎥⎥⎦ . (13)

We notice from Equation (13) that a specific range of rows

of Khatri-Rao product can be constructed if we have the two

factor matrices and the corresponding range of row indices.

With this change, we only need to broadcast relatively small

factor matrices A, B, and C along with the index ranges

assigned for each machine without having to materialize the

entire Khatri-Rao product.
Unfolded Tensor. While the Khatri-Rao products are com-

puted iteratively, matricizations of an input tensor need to

�
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Fig. 4: An overview of caching. Blue rectangles in (C � B)T

correspond to K pointwise vector-matrix products, among which
(cj:�B)T is shown in detail. BT is a unit of caching: combinations
of its row summations are cached in a table. ai: ∧ cj: determines
which rows are to be used for the row summation of (cj:�B)T . For
large R, rows of BT are split into multiple, smaller groups, each of
which is cached separately.

be performed only once. However, in contrast to the Khatri-

Rao product, we cannot avoid shuffling the entire unfolded

tensor as we have no characteristics to exploit as in the case

of Khatri-Rao product. Furthermore, unfolded tensors take up

the largest space during the execution of DBTF. In particular,

its row dimension quickly becomes very large as the sizes of

factor matrices increase. Therefore, we partition the unfolded

tensors in the beginning, and do not shuffle them afterwards.

We do vertical partitioning of both the Khatri-Rao product and

unfolded tensors as shown in Figure 3 (see Section III-D for

more details on partitioning).

C. Caching of Intermediate Computation Results

The second and the most important challenge for efficient

and scalable Boolean tensor factorization is how to minimize

the number of floating point operations (flops) for updating

factor matrices. In this subsection, we describe the problem in

detail, and present our solution.

Problem. Given our procedure to update factor matrices

(Section III-A), the two most frequent operations are 1)

computing the Boolean sums of selected rows of (C �B)T ,

and 2) comparing the resulting row with the corresponding

row of X(1). Assuming that all factor matrices are of the same

size, I-by-R, these operations take O(RI2) and O(I2) time,

respectively. Since we compute the errors for both cases of

when each factor matrix entry is set to 0 and 1, each operation

needs to be performed 2RI times to update a factor matrix

of size I-by-R; then, updating all three factor matrices for T
iterations performs each operation 6TRI times in total. Due to

the high computational costs and large number of repetitions, it

is crucial to minimize the number of flops for these operations.

Our Solution. We start from the following observations:

• By Lemma 1, DBTF computes the Boolean sum of

selected rows in (C�B)T . This amounts to performing

a specific set of operations repeatedly, which we describe

below.
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• Given the rank R, the number of combinations of select-

ing rows in (C�B)T is 2R.

Our main idea is to precompute the set of operations that

will be performed repeatedly, cache the results, and reuse

them for all possible Boolean row summations. Figure 4 gives

an overview of our idea for caching. We note that from the

definitions of the Khatri-Rao (Equation (3)) and the pointwise

vector-matrix product (Equation (4)),

(C�B)T = [(c1: �B)T (c2: �B)T · · · (cK: �B)T ].

In Figure 4, blue rectangles in (C � B)T correspond to

K pointwise vector-matrix (PVM) products. Since a row of

(C�B)T is made up of a sequence of K corresponding rows

of PVM products (c1: � B)T , . . . , (cK: � B)T , the Boolean

sum of selected rows of (C � B)T can be constructed by

summing up the same set of rows in each PVM product, and

concatenating the resulting rows into a single row.

Given that the row ai: is being updated as in Figure 4,

we notice that computing Boolean row summations of each

(cj: �B)T amounts to summing up the rows in BT that are

selected by the next two conditions. First, we choose all those

rows of BT whose corresponding entries in cj: are 1. Since

all other rows are empty vectors by the definition of Khatri-

Rao product, they can be ignored in computing Boolean row

summations. Second, we pick the set of rows from each (cj:�
B)T selected by the value of row ai: as they are the targets

of Boolean summation. Therefore, the value of Boolean AND

(∧) between the rows ai: and cj: determines which rows are

to be used for the row summation of (cj: �B)T .

In computing a row summation of (C�B)T , we repeatedly

sum a subset of rows in BT selected by the above conditions

for each PVM product. Then, if we have the results for

all combinations of row summations of BT , we can avoid

summing up the same set of rows over and over again. DBTF

precalculates these combinations, and caches the results in a

table in memory. This tables maps a specific subset of selected

rows in BT to their Boolean summation result; we use ai:∧cj:
as a key to this table.

An issue related with this approach is that the space required

for the table increases exponentially with R. For example,

when the rank R is 20, we need a table that can store 220 ≈
1, 000, 000 row summations. Since this is infeasible for large

R, when R becomes larger than a threshold value V , we divide

the rows evenly into �R/V 
 smaller groups, construct smaller

tables for each group, and then perform additional Boolean

summation of rows that come from the smaller tables.

Lemma 2. Given R and V , the number of required cache
tables is �R/V 
, and each table is of size 2�R/�R/V ��.

For instance, when the rank R is 18 and V is set to 10,

we create two tables of size 29, the first one storing possible

summations of b:1
T , ...,bT

:9, and the second one storing those

of b:10
T , ...,bT

:18. This provides a good trade-off between

space and time: while it requires additional computations for

row summations, it reduces the amount of memory used for
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Fig. 5: An overview of partitioning. There are a total of N partitions
p1, p2, ..., pN , among which the l-th partition pl is shown in detail.
A partition is divided into “blocks” (rectangles in dashed lines) by
the boundaries of underlying pointwise vector-matrix products (blue
rectangles). Numbers in pl refer to the kinds of blocks a partition
can be split into.

the tables, and also the time to construct them, which also

increases exponentially with R.

D. Careful Partitioning of the Workload

The third challenge is how to partition the workload ef-

fectively. A partition is a unit of workload distributed across

machines. Partitioning is important since it determines the

level of parallelism and the amount of shuffled data. Our goal

is to fully utilize the available computing resources, while

minimizing the amount of network traffic.

First, as described in Section III-B, DBTF partitions the

unfolded tensor vertically: a single partition covers a range of

consecutive columns. The main reason for choosing vertical

partitioning instead of horizontal one is because with vertical

partitioning, each partition can perform Boolean summations

of the rows assigned to it and compute their errors indepen-

dently, with no need of communications between partitions.

On the other hand, with horizontal partitioning, each partition

needs to communicate with others to be able to compute the

Boolean row summations. Furthermore, horizontal partitioning

splits the range of rank R, which is usually smaller than the

dimensionalities of an input tensor; small number of partitions

lowers the level of parallelism.

Since the workloads are vertically partitioned, each partition

computes an error only for the part of the row distributed to

it. Therefore, errors from all partitions should be considered

together to make the decision of whether to update an entry

to 0 or 1. DBTF collects from all partitions the errors for the

entries in the column being updated, and sets each one to the

value with the smallest error.

Second, DBTF partitions the unfolded tensor in a cache-

friendly manner. By “cache-friendly”, we mean structuring

the partitions in such a way that facilitates reuse of cached

row summation results as discussed in Section III-C. This

is crucial since cache utilization affects the performance of

DBTF significantly. The unit of caching in DBTF is BT as

shown in Figure 4. However, the size of each partition is not

always the same as or a multiple of that of BT . Depending on

the number of partitions and the sizes of C and B, a partition
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may cross multiple pointwise vector-matrix (PVM) products

(i.e., (cj: �B)T ), or may be a part of one PVM product.
Figure 5 presents an overview of our idea for cache-friendly

partitioning in DBTF. There are a total of N partitions p1, p2,

..., pN , among which the l-th partition pl is shown in detail.

A partition is divided into “blocks” (rectangles in dashed

lines) by the boundaries of underlying PVM products (blue

rectangles). Numbers in pl refer to the kinds of blocks a

partition can be split into. Since the unit of caching is BT ,

with this orginization, each block of a partition can efficiently

fetch its row summation results from the cache table.

Lemma 3. A partition can have at most three types of blocks.

Proof. There are four different types of blocks—(1), (2), (3),

and (4)—as shown in Figure 5. (a) If the size of a partition is

smaller than or equal to that of a single PVM product, it can

consist of up to two blocks. When the partition does not cross

the boundary of PVM products, it consists of a single block,

which corresponds to one of the four types (1), (2), (3), and

(4). On the other hand, when the partition crosses the boundary

between PVM products, it consists of two blocks of types (2)

and (4). (b) If the area covered by a partition is larger than

that by a single PVM product, multiple blocks comprise the

partition: possible combinations of blocks are (2)+(3)*+(4),

(3)++(4)?, and (2)?+(3)+ where the star (*) superscript denotes

that the preceding type is repeated zero or more times, the plus

(+) superscript denotes that the preceding type is repeated one

or more times, and the question mark (?) superscript denotes

that the preceding type is repeated zero or one time. Thus, a

partition can have at most three types of blocks.

An issue that should be considered is that blocks of types

(1), (2), and (4) are smaller than a single PVM product. If a

partition has such blocks, we compute additional cache tables

for the smaller blocks from the full-size one so that these

blocks can also exploit caching. By Lemma 3, at most two

smaller tables need to be computed for each partition, and

each one can be built efficiently as constructing it requires

only a single pass over the full-size cache. Partitioning is a

one-off task in DBTF; DBTF constructs these partitions in

the beginning, and caches the entire partitions for efficiency.

E. Putting things together
We present DBTF in Algorithm 2. DBTF first partitions

the unfolded input tensors (lines 1-3 in Algorithm 2): each

unfolded tensor is vertically partitioned and then cached (Al-

gorithm 3). Next, DBTF initializes L set of factor matrices

randomly (line 6 in Algorithm 2). Instead of initializing a

single set of factor matrices, DBTF initializes multiple sets

as better initial factor matrices often lead to more accurate

factorization. DBTF updates all of them in the first iteration,

and runs the following iterations with the factor matrices that

obtained the smallest error (lines 7-8 in Algorithm 2). In each

iteration, factor matrices are updated one at a time, while the

other two are fixed (lines 15-17 in Algorithm 2).
The procedure for updating a factor matrix is shown in

Algorithm 4; its core operations—computing a Boolean row

Algorithm 2: DBTF algorithm

Input: a three-way binary tensor X ∈ B
I×J×K , rank R, a

maximum number of iterations T , a number of sets of
initial factor matrices L, and a number of partitions N .

Output: Binary factor matrices A ∈ B
I×R, B ∈ B

J×R, and
C ∈ B

K×R.
1 pX(1) ← Partition(X(1), N)
2 pX(2) ← Partition(X(2), N)
3 pX(3) ← Partition(X(3), N)
4 for t ← 1, . . . , T do
5 if t = 1 then
6 initialize L sets of factor matrices randomly
7 apply UpdateFactors to each set, and find the set

smin with the smallest error
8 (A,B,C) ← smin

9 else
10 (A,B,C) ← UpdateFactors(A,B,C)

11 if converged then
12 break out of for loop

13 return A, B, C

14 Function UpdateFactors(A,B,C)
/* update A to minimize

∣
∣X(1) −A � (C�B)T

∣
∣ */

15 A ← UpdateFactor(pX(1),A,C,B)
/* update B to minimize

∣
∣X(2) −B � (C�A)T

∣
∣ */

16 B ← UpdateFactor(pX(2),B,C,A)
/* update C to minimize

∣
∣X(3) −C � (B�A)T

∣
∣ */

17 C ← UpdateFactor(pX(3),C,B,A)
18 return A,B,C

Algorithm 3: Partition
Input: an unfolded binary tensor X ∈ B

P×Q, and a number of
partitions N .

Output: A partitioned unfolded tensor pX ∈ B
P×Q.

1 Distributed (D): split X into non-overlapping partitions

p1, p2, . . . , pN such that [p1 p2 . . . pN ] ∈ B
P×Q , and

∀i ∈ {1, ..., N}, pi ∈ B
P×H where

⌊
Q
N

⌋ ≤ H ≤ ⌈
Q
N

⌉

2 pX ← [p1 p2 . . . pN ]
3 foreach p′ ∈ pX do
4 D: further split p′ into a set of blocks divided by the

boundaries of underlying pointwise vector-matrix products
as depicted in Figure 5 (see Section III-D)

5 cache pX across machines
6 return pX

summation and its error—are performed in a fully distributed

manner (marked by “D”, lines 7-9). DBTF caches all com-

binations of Boolean row summations (Algorithm 5) at the

beginning of UpdateFactor algorithm to avoid repeatedly

computing them. Then DBTF collects errors computed across

machines, and updates the current column DBTF is visiting

(lines 10-12 in Algorithm 4). Boolean factors are repeatedly

updated until convergence, that is, until the reconstruction

error does not decrease significantly, or a maximum number

of iterations has been reached.

Two types of data are sent to each machine: partitions of

unfolded tensors are distributed across machines once in the

beginning, and factor matrices A,B, and C are broadcast to

each machine at each iteration; machines send intermediate

errors back to the driver node for each column update.
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Algorithm 4: UpdateFactor
Input: a partitioned unfolded tensor pX ∈ B

P×QS , factor
matrices A ∈ B

P×R (factor matrix to update),
Mf ∈ B

Q×R (first matrix for Khatri-Rao product), and
Ms ∈ B

S×R (second matrix for Khatri-Rao product),
and a threshold value V to limit the size of a single
cache table.

Output: an updated factor matrix A.
1 CacheRowSummations(pX, Ms, V )
/* iterate over columns and rows of A */

2 for column iter c ← 1 . . . R do
3 for row iter r ← 1 . . . P do
4 for arc ← 0, 1 do
5 foreach partition p′ ∈ pX do
6 foreach block b ∈ p′ do
7 Distributed (D): compute the cache key

k ← ar: ∧ [Mf ]i: where i is the row
index of Mf such that block b is
contained in ([Mf ]i: �Ms)

T

8 D: using k, fetch the cached Boolean
summation of the rows of block b
selected by ar:

9 D: compute the error between the fetched
row and the corresponding part of pxr:

10 collect errors for the entries of column a:c from all blocks
(for both cases of when each entry is set to 0 and 1)

11 for row iter r ← 1 . . . P do /* update a:c */
12 update arc to the value that yields a smaller error (i.e.,∣

∣Xr: − ar: � (Mf �Ms)
T
∣
∣)

13 return A

Algorithm 5: CacheRowSummations
Input: a partitioned unfolded tensor pX ∈ B

P×QS , a matrix
for caching Mc ∈ B

S×R, and a threshold value V to
limit the size of a single cache table.

1 foreach partition p′ ∈ pX do
2 Distributed (D): m ← all combinations of row

summations of Mc (if S > V , divide the rows of Mc

evenly into smaller groups of rows, and cache row
summations from each one separately)

3 foreach block b ∈ p′ do
4 D: if block b is of the type (1), (2), or (4) as shown in

Figure 5, vertically slice m such that the sliced one
corresponds to block b

5 D: cache (the sliced) m for partition p′ if not cached

F. Implementation

In this section, we discuss practical issues pertaining to

the implementation of DBTF on Spark. Tensors are loaded

as RDDs (Resilient Distributed Datasets) [7], and unfolded

using RDD’s map function. We apply map and combineByKey
operations to unfolded tensors for partitioning: map transforms

an unfolded tensor into a pair RDD whose key is a partition

ID; combineByKey groups non-zeros by partition ID and

organizes them into blocks. Partitioned unfolded tensor RDDs

are then persisted in memory. We create a pair RDD containing

combinations of row summations, which is keyed by partition

ID and joined with the partitioned unfolded tensor RDD.

This joined RDD is processed in a distributed manner using

mapPartitions operation. In obtaining the key to the table for

row summations, we use bitwise AND operation for efficiency.

At the end of column-wise iteration, a driver node collects
errors computed from each partition to update the column.

G. Analysis

We analyze the proposed method in terms of time com-

plexity, memory requirement, and the amount of shuffled data.

We use the following symbols in the analysis: R (rank), M
(number of machines), T (number of maximum iterations), L
(number of sets of initial factor matrices), N (number of par-

titions), and V (maximum number of rows to be cached). For

the sake of simplicity, we assume an input tensor X ∈ B
I×I×I .

Lemma 4. The time complexity of DBTF is O(|X| + (L +
T )

(
N
⌈
R
V

⌉
2�R/�R/V ��I + IR

[⌈
R
V

⌉
(min(V,R)max(I,N) +

I2) +N
])

.

Proof. Algorithm 2 is composed of three operations: (1) parti-

tioning (lines 1-3), (2) initialization (line 6), and (3) updating

factor matrices (lines 7 and 10). (1) After unfolding an input

tensor X into X, DBTF splits X into N partitions, and further

divides each partition into a set of blocks (Algorithm 3).

Unfolding takes O(|X|) time as each entry can be mapped

in constant time (Equation 1), and partitioning takes O(|X|)
time since determining which partition and block an entry

of X belongs to is also a constant-time operation. It takes

O(|X|) time in total. (2) Randomly initializing L sets of factor

matrices takes O(LIR) time. (3) The update of a factor matrix

(Algorithm 4) consists of four steps as follows.

i. Caching row summations (line 1). By Lemma 2, the

number of cache tables is �R/V 
, and the maximum size

of a single cache table is 2�R/�R/V ��. Each row summation

can be obtained in O(I) time via incremental computations

that use prior row summation results. Hence, caching row

summations for N partitions takes O(N
⌈
R
V

⌉
2�R/�R/V ��I).

ii. Fetching a cached row summation (lines 7-8). The number

of constructing row summations and computing errors to

update a factor matrix is 2IR. An entire row summation is

constructed by fetching row summations from the cache ta-

bles O(max(I,N)) times across N partitions. If R≤V , a

row summation can be constructed by a single access to the

cache. If R>V , multiple accesses are required to fetch row

summations from
⌈
R
V

⌉
tables. Also, constructing a cache

key requires O(min(V,R)) time. Thus, fetching a cached

row summation takes O(
⌈
R
V

⌉
min(V,R)max(I,N)) time.

When R>V , there is an additional cost to sum up
⌈
R
V

⌉
row summations, which is O((

⌈
R
V

⌉ − 1)I2). In total, it

takes O(IR
[⌈

R
V

⌉
min(V,R)max(I,N)+ (

⌈
R
V

⌉−1)I2
]
).

iii. Computing the error for the fetched row summation

(line 9). It takes O(I2) time to calculate an error of one

row summation with regard to the corresponding row of the

unfolded tensor. For each column entry, DBTF constructs

row summations (ar:�(Mf�Ms)
T in Algorithm 4) twice

(for arc = 0 and 1). Therefore, given a rank R, this step

takes O(I3R) time. Note that the time complexities for
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steps ii and iii are a loose upper bound since in practice

the computations for the I2 terms take time proportional

to the number of non-zeros in the involved matrices.

iv. Updating a factor matrix (lines 10-12). Updating an entry

in a factor matrix requires summing up errors for each

value that are collected from all partitions; this takes O(N)
time. Updating all entries takes O(NIR) time.

Thus, DBTF takes O(|X| + (L + T )
(
N
⌈
R
V

⌉
2�R/�R/V ��I +

IR
[⌈

R
V

⌉
(min(V,R)max(I,N) + I2) +N

])
time.

Lemma 5. The memory requirement of DBTF is O(|X| +
NI

⌈
R
V

⌉
2�R/�R/V �� +MRI).

Proof. For the decomposition of an input tensor X ∈ B
I×I×I ,

DBTF stores the following four types of data in memory at

each iteration: (1) partitioned unfolded tensors pX(1), pX(2),

and pX(3), (2) row summation results, (3) factor matrices

A,B, and C, and (4) errors for the entries of a column

being updated. (1) While partitioning of an unfolded tensor

by DBTF structures it differently from the original one, the

total number of elements does not change after partitioning.

Thus, pX(1), pX(2), and pX(3) require O(|X|) memory. (2)

By Lemma 2, the total number of cached row summations

is O(
⌈
R
V

⌉
2�R/�R/V ��). By Lemma 3, each partition has at

most three types of blocks. Since an entry in the cache table

uses O(I) space, the total amount of memory used for row

summation results is O(NI
⌈
R
V

⌉
2�R/�R/V ��). Note that since

Boolean factor matrices are normally sparse, many cached

row summations are not normally dense. Therefore, the actual

amount of memory used is usually smaller than the stated

upper bound. (3) Since A,B, and C are broadcast to each

machine, they require O(MRI) memory in total. (4) Each

partition stores the errors for the entries of the column being

updated, which takes O(NI) memory.

Lemma 6. The amount of shuffled data for partitioning an
input tensor X is O(|X|).
Proof. DBTF unfolds an input tensor X into three different

modes, X(1), X(2), and X(3), and then partitions each one:

unfolded tensors are shuffled across machines so that each

machine has a specific range of consecutive columns of

unfolded tensors. In the process, the entire data can be shuffled,

depending on the initial distribution of the data. Thus, the

amount of data shuffled for partitioning X is O(|X|).
Lemma 7. The amount of shuffled data after the partitioning
of an input tensor X is O(TRI(M +N)).

Proof. Once the three unfolded input tensors X(1), X(2), and

X(3) are partitioned, they are cached across machines, and are

not shuffled. In each iteration, DBTF broadcasts three factor

matrices A, B, and C to each machine, which takes O(MRI)
space in sum. With only these three matrices, each machine

generates the part of row summation it needs to process. Also,

in updating a factor matrix of size I-by-R, DBTF collects

from all partitions the errors for both cases of when each entry

of the factor matrix is set to 0 and 1. This process involves

TABLE III: Summary of real-world and synthetic tensors used for
experiments. B: billion, M: million, K: thousand.

Name I J K Non-zeros

Facebook 64K 64K 870 1.5M
DBLP 418K 3.5K 50 1.3M

CAIDA-DDoS-S 9K 9K 4K 22M
CAIDA-DDoS-L 9K 9K 393K 331M

NELL-S 15K 15K 29K 77M
NELL-L 112K 112K 213K 18M

Synthetic-scalability 26∼213 26∼213 26∼213 26K∼5.5B
Synthetic-error 100 100 100 7K∼240K

transmitting 2IR errors from each partition to the driver node,

which takes O(NRI) space in total. Accordingly, the total

amount of data shuffled for T iterations after partitioning X

is O(TRI(M +N)).
IV. EXPERIMENTS

In this section, we experimentally evaluate our proposed

method DBTF. We aim to answer the following questions.

Q1 Data Scalability (Section IV-B). How well do DBTF

and other methods scale up with respect to the following

aspects of an input tensor: number of non-zeros, dimen-

sionality, density, and rank?

Q2 Machine Scalability (Section IV-C). How well does

DBTF scale up with respect to the number of machines?

Q3 Reconstruction error (Section IV-D). How accurately

do DBTF and other methods factorize the given tensor?

We introduce the datasets and experimental environment in

Section IV-A. After that, we answer the above questions in

Sections IV-B to IV-D.

A. Experimental Settings

1) Datasets: We use both real-world and synthetic ten-

sors to evaluate the proposed method. The tensors used in

experiments are listed in Table III. For real-world tensors,

we use Facebook, DBLP, CAIDA-DDoS-S, CAIDA-DDoS-

L, NELL-S, and NELL-L. Facebook1 is temporal relationship

data between users. DBLP2 is a record of DBLP publications.

CAIDA-DDoS3 datasets are traces of network attack traffic.

NELL datasets are knowledge base tensors; S (small) and L

(large) suffixes indicate the relative size of the dataset.

We prepare two different sets of synthetic tensors, one

for scalability tests and another for reconstruction error tests.

For scalability tests, we generate random tensors, varying the

following aspects: (1) dimensionality and (2) density. We vary

one aspect while fixing others to see how scalable DBTF and

other methods are with respect to a particular aspect. For

reconstruction error tests, we generate three random factor

matrices, construct a noise-free tensor from them, and then

add noise to this tensor, while varying the following aspects:

(1) factor matrix density, (2) rank, (3) additive noise level, and

(4) destructive noise level. When we vary one aspect, others

are fixed. The amount of noise is determined by the number of

1http://socialnetworks.mpi-sws.org/data-wosn2009.html
2http://www.informatik.uni-trier.de/∼ley/db/
3http://www.caida.org/data/passive/ddos-20070804 dataset.xml
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1’s in the noise-free tensor. For example, 10% additive noise

indicates that we add 10% more 1’s to the noise-free tensor,

and 5% destructive noise means that we delete 5% of the 1’s

from the noise-free tensor.

2) Environment: DBTF is implemented on Spark, and

compared with two previous algorithms for Boolean CP de-

composition: Walk’n’Merge [2] and BCP ALS [3]. We run

experiments on a cluster with 17 machines, each of which is

equipped with an Intel Xeon E3-1240v5 CPU (quad-core with

hyper-threading at 3.50GHz) and 32GB RAM. The cluster runs

Spark v2.0.0, and consists of a driver node and 16 worker

nodes. In the experiments for DBTF, we use 16 executors,

and each executor uses 8 cores. The amount of memory for

the driver and each executor process is set to 16GB and

25GB, respectively. The default values for DBTF parameters

L, V , and T (see Algorithms 2-5) are set to 1, 15, and

10, respectively. We run Walk’n’Merge and BCP ALS on

one machine in the cluster. For Walk’n’Merge, we use the

original implementation4 provided by the authors, and run

it with the same parameter settings as in [2] to get similar

results: the merging threshold t is set to 1 − (nd + 0.05)
where nd is the destructive noise level of an input tensor;

the minimum size of blocks is 4-by-4-by-4; the length of

random walks is 5; the other parameters are set to default

values. We implement BCP ALS using the open-source code

of ASSO5[8]. For ASSO, the threshold value for discretization

is set to 0.7; default values are used for other parameters.

B. Data Scalability

We evaluate the data scalability of DBTF and other methods

using both synthetic random and real-world tensors.

1) Synthetic Data: With synthetic tensors, we measure the

data scalability with regard to three different criteria. We allow

experiments to run for up to 6 hours, and mark those running

longer than that as O.O.T. (Out-Of-Time).

Dimensionality. We increase the dimensionality I=J=K
of each mode from 26 to 213, while setting the tensor den-

sity to 0.01 and the rank to 10. As shown in Figure 1(a),

DBTF successfully decomposes tensors of size I=J=K=213,

while Walk’n’Merge and BCP ALS run out of time when

I=J=K ≥ 29 and ≥ 210, respectively. Notice that the running

time of Walk’n’Merge and BCP ALS increases rapidly with

the dimensionality: DBTF decomposes the largest tensors

Walk’n’Merge and BCP ALS can process 382 times and 68

times faster than each method. Only for the smallest tensor

of 26 scale, DBTF is slower than other methods, which is

because the overhead of running a distributed algorithm on

Spark (e.g., code and data distribution, network I/O latency,

etc) dominates the running time.

Density. We increase the tensor density from 0.01 to 0.3,

while fixing I=J=K to 28 and the rank to 10. As shown in

Figure 1(b), DBTF decomposes tensors of all densities, and

exhibits near constant performance regardless of the density.

4http://people.mpi-inf.mpg.de/∼pmiettin/src/walknmerge.zip
5http://people.mpi-inf.mpg.de/∼pmiettin/src/DBP-progs/
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Fig. 6: The scalability of DBTF and other methods on the real-
world datasets. Notice that only DBTF scales up to all datasets,
while Walk’n’Merge processes only Facebook, and BCP ALS fails
to process all datasets. DBTF runs 21× faster than Walk’n’Merge on
Facebook. An empty bar denotes that the corresponding method runs
out of time (> 12 hours) or memory while decomposing the dataset.

BCP ALS also scales up to 0.3 density. On the other hand,

Walk’n’Merge runs out of time when the density increases

over 0.1. In terms of running time, DBTF runs 716 times faster

than Walk’n’Merge, and 13 times faster than BCP ALS. This

relatively small difference between the running times of DBTF

and BCP ALS is due to the small dimensionality of the tensor;

for tensors with larger dimensionalities, the performance gap

between the two grows wider as we see in Figure 1(a).

Rank. We increase the rank of a tensor from 10 to 60,

while fixing I=J=K to 28 and the tensor density to 0.01. As

shown in Figure 1(c), while all methods scale up to rank 60,

DBTF is the fastest among them: DBTF is 21 times faster

than BCP ALS, and 43 times faster than Walk’n’Merge when

the rank is 60. Note that V is set to 15 in all experiments. Since

Walk’n’Merge returns more than 60 dense blocks (rank-1 ten-

sors) from the input tensor, the running time of Walk’n’Merge

is the same across all ranks.

2) Real-world Data: We measure the running time of each

method on the real-world datasets. For real-world tensors, we

set the maximum running time to 12 hours. As Figure 6 shows,

DBTF is the only method that scales up for all datasets.

Walk’n’Merge decomposes only Facebook, and runs out of

time for all other datasets; BCP ALS fails to handle real-

world tensors as it causes out-of-memory (O.O.M.) errors for

all datasets, except for DBLP for which BCP ALS runs out

of time. Also, DBTF runs 21 times faster than Walk’n’Merge

on Facebook.

C. Machine Scalability

We measure the machine scalability by increasing the

number of machines from 4 to 16, and report T4/TM where

TM is the running time using M machines. We use the

synthetic tensor of size I=J=K=212 and of density 0.01,

and set the rank to 10. As Figure 7 shows, DBTF shows near

linear scalability, achieving 2.2× speed-up when the number

of machines is increased from 4 to 16.

D. Reconstruction Error

We evaluate the accuracy of DBTF in terms of recon-

struction error, which is defined as |X − X′| where X is an
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Fig. 7: The scalability of DBTF with respect to the number of
machines. TM means the running time using M machines. Notice
that the running time scales up near linearly.

input tensor and X′ is a reconstructed tensor. In measuring

reconstruction errors, we vary one of the four different data

aspects—factor matrix density (0.1), rank (10), additive noise

level (0.1), and destructive noise level (0.1)—while fixing the

others to the default values. The values in the parentheses

are the default settings for each aspect. Tensors of size

I=J=K=100 are used in experiments. The DBTF parameter

L is set to 20. We run each configuration three times, and

report the average of the results to reduce the dependency

on randomness of DBTF and Walk’n’Merge. We compare

DBTF with Walk’n’Merge as they take different approaches

for Boolean CP decomposition, and exclude BCP ALS as

DBTF and BCP ALS are based on the same Boolean CP

decomposition framework (Algorithm 1). For Walk’n’Merge,

we compute the reconstruction error from the blocks obtained

before the merging phase [2], since the merging procedure

significantly increased the reconstruction error when applied

to our synthetic tensors. Figure 8(d) shows the difference

between the version of Walk’n’Merge with the merging proce-

dure (Walk’n’Merge*) and the one without it (Walk’n’Merge).

Factor Matrix Density. We increase the density of factor

matrices from 0.1 to 0.3. As shown in Figure 8(a), the recon-

struction error of DBTF is smaller than that of Walk’n’Merge

for all densities. In particular, as the density increases, DBTF

obtains more accurate results compared to Walk’n’Merge.

Rank. We increase the rank of a tensor from 10 to 60.

As shown in Figure 8(b), the reconstruction errors of both

methods increase in proportion to the rank. This is an expected

result since, given a fixed density, the increase in the rank of

factor matrices leads to increased number of 1’s in the input

tensor. Notice that the reconstruction error of DBTF is smaller

than that of Walk’n’Merge for all ranks.

Additive Noise Level. We increase additive noise level from

0.1 to 0.4. As Figure 8(c) shows, the reconstruction errors

of both methods increase in proportion to the additive noise

level. While the gap between the two methods narrows down

as the noise level increases, the reconstruction error of DBTF

is smaller than that of Walk’n’Merge for all additive noise

levels.

Destructive Noise Level. We increase destructive noise

level from 0.1 to 0.4. As Figure 8(d) shows, the reconstruction

errors of DBTF and Walk’n’Merge decrease in general as

the destructive noise level increases, except for the interval

from 0.1 to 0.2 where that of DBTF increases. Destructive

noise makes the factorization harder by sparsifying tensors

and introducing noises at the same time. Notice that DBTF

produces more accurate results than Walk’n’Merge, except at

the destructive noise level 0.4, which makes tensors highly

sparse.
V. RELATED WORKS

In this section, we review related works on Boolean and nor-

mal tensor decompositions, and distributed computing frame-

works.

A. Boolean tensor decomposition.

Leenen et al. [6] proposed the first Boolean CP decom-

position algorithm. Miettinen [3] presented Boolean CP and

Tucker decomposition methods along with a theoretical study

of Boolean tensor rank and decomposition. In [5], Belohlávek

et al. presented a greedy algorithm for Boolean CP decom-

position of three-way binary data. Erdös et al. [2] proposed a

scalable algorithm for Boolean CP and Tucker decompositions,

which performs random walk for finding dense blocks (rank-

1 tensors) and applies the MDL principle to select the best

rank automatically. In [9], Erdös et al. applied the Boolean

Tucker decomposition method proposed in [2] to discover

synonyms and find facts from the subject-predicate-object

triples. Finding closed itemsets in N -way binary tensor [10],

[11] is a restricted form of Boolean CP decomposition, in

which an error of representing 0’s as 1’s is not allowed.

Metzler et al. [4] presented an algorithm for Boolean tensor

clustering, which is another form of restricted Boolean CP

decomposition where one of the factor matrices has exactly

one non-zero per row.

B. Normal tensor decomposition.

Many algorithms have been developed for normal tensor

decomposition. In this subsection, we focus on scalable ap-

proaches developed recently. GigaTensor [12] is the first work

for large-scale CP decomposition running on MapReduce.

HaTen2 [13], [14] improves upon GigaTensor and presents

a general, unified framework for Tucker and CP decompo-

sitions. In [15], Jeon et al. proposed SCouT for scalable

coupled matrix-tensor factorization. Recently, tensor decom-

position methods proposed in [12], [16], [13], [14], [15] have

been integrated into a multi-purpose tensor mining library,

BIGtensor [17]. Beutel et al. [18] proposed FlexiFaCT, a

scalable MapReduce algorithm to decompose matrix, tensor,

and coupled matrix-tensor using stochastic gradient descent.

CDTF [19], [20] provides a scalable tensor factorization

method focusing on non-zero elements of tensors.

C. Distributed computing frameworks.

MapReduce [21] is a distributed programming model for

processing large datasets in a massively parallel manner. The

advantages of MapReduce include massive scalability, fault

tolerance, and automatic data distribution and replication.

Hadoop [22] is an open source implementation of MapReduce.

Due to the advantages of MapReduce, many data mining tasks

[12], [23], [24], [25] have used Hadoop. However, due to

108310831083106910691069106910691069108110811081



 0

 5

 10

 15

 20

 25

 0.1  0.15  0.2  0.25  0.3

Re
co

ns
tru

ct
io

n 
er

ro
r/

10
4 Walk'n'Merge

DBTF

(a) Factor Matrix Density

 0

 1

 2

 3

 4

 5

 6

 10  20  30  40  50  60

Re
co

ns
tru

ct
io

n 
er

ro
r/

10
4

Walk'n'Merge
DBTF

(b) Rank

 7

 8

 9

 10

 11

 12

 0.1  0.2  0.3  0.4

Re
co

ns
tru

ct
io

n 
er

ro
r/

10
3 Walk'n'Merge

DBTF

(c) Additive Noise Level

102

103

104

105

106

 0.1  0.2  0.3  0.4

Re
co

ns
tru

ct
io

n 
er

ro
r

Walk'n'Merge*
Walk'n'Merge
DBTF

(d) Destructive Noise Level

Fig. 8: The reconstruction error of DBTF and other methods with respect to factor matrix density, rank, additive noise level, and destructive
noise level. Walk’n’Merge* in (d) refers to the version of Walk’n’Merge which executes the merging phase. Notice that the reconstruction
errors of DBTF are smaller than those of Walk’n’Merge for all aspects except for the tensor with the largest destructive noise.

intensive disk I/O, Hadoop is inefficient at executing iterative

algorithms [26]. Spark [7] is a distributed data processing

framework that provides capabilities for in-memory compu-

tation and data storage. These capabilities enable Spark to

perform iterative computations efficiently, which are common

across many machine learning and data mining algorithms, and

support interactive data analytics. Spark also supports various

operations other than map and reduce, such as join, filter, and

groupBy. Thanks to these advantages, Spark has been used in

several domains recently [27], [28], [29], [30].

VI. CONCLUSION

In this paper, we propose DBTF, a distributed algorithm

for Boolean tensor factorization. By caching computation

results, exploiting the characteristics of Boolean operations,

and with careful partitioning, DBTF successfully tackles the

high computational costs and minimizes the intermediate data.

Experimental results show that DBTF decomposes up to

163–323× larger tensors than existing methods in 68–382×
less time, and exhibits near-linear scalability in terms of tensor

dimensionality, density, rank, and machines.
Future works include extending the method for other

Boolean tensor decomposition methods including Boolean

Tucker.
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